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Abstract— Collaborative robots are advancing the healthcare
frontier, in applications such as rehabilitation and physical
therapy. Effective physical collaboration in human-robot sys-
tems require an understanding of partner intent and capability.
Various modalities exist to convey such information between
human agents, however, natural interactions between humans
and robots are difficult to characterise and achieve. To enhance
inter-agent communication, predictive models for human move-
ment have been devised. One such model is Fitts’ law. Many
works using Fitts’ law rely on massless interfaces. However,
this coupling between human and robot, and the inertial effects
experienced, may affect the predictive ability of Fitts’ law.

Experiments were conducted on human-robot dyads during
a target-directed force exertion task. From the interactions,
the results indicate that there is no observable effect regarding
Fitts’ law’s predictive ability.

I. INTRODUCTION

In real-world applications, there are tasks that cannot
be easily achieved by a single agent, whether robot or
human. A dyad is a system comprising of two agents. It
provides opportunities to expand the capability of a system
by mitigating deficiencies and exploiting the strengths of its
respective agents, e.g., combining human cognition with a
robot’s physical capability. However, effective dyadic inter-
actions require an understanding of the partner’s intent and
their capability. Achieving such effective interaction implies
that both agents are able to perceive, and most importantly,
contribute in a meaningful way to achieve the shared goal.

In human-human dyads, conveying information is
achieved through explicit verbal communication and implicit
non-verbal interactions, including body language and touch.
However, inter-agent understanding in human-robot dyads,
require a protocol for robots to discern human interaction.

Historical experiments have shown that humans produce
similar movements during target-directed reaching tasks [1].
A large number of models and approaches have been pro-
posed to investigate the underlying reasons for the observed
features during these movements. An analysis of spatio-
temporal characteristics of target-directed reaching move-
ments by [2] described how participants “generate roughly
straight hand trajectories with single-peaked, bell-shaped
speed profiles”. This supported initial observations by [3]
suggesting that multi-joint arm movements are planned in
Cartesian space. However, observations of complex arm
movements by [4] disputed the previous hypothesis by high-
lighting discrepancies in human velocity profiles, arguing
that the bell-shaped velocity profile is not necessarily adhered
to during motion.

Fig. 1: The setup for the experiments.

Alternative theories on human motor command generation
include simulations and observations by [1], which assert that
human motion is planned using a staggered joint interpola-
tion method. Further works by [5] demonstrated that a min-
imum torque change model can generate trajectories similar
to those observed during target-directed reaching movements,
unconstrained motion in a plane, and constrained motion
under the influence of an external force.

One information-theoretic model for predicting human
movement is Fitts’ law [6]. Due to its simplicity, many works
have utilised the model to guide their applications. Recent
works using Fitts’ law include [7] utilising the model to
constrain electromyography classifications, [8] defining task
difficulty through a fusion of physiological and kinematic
metrics, and [9] predicting human intention during the gen-
eration of robot trajectories in collaborative workspaces.

One aspect of applying Fitts’ law to physical systems,
which is often neglected, is the device interface for humans.
With most experiments relying on massless interactions, the
effect of the human-device interface is rarely explored. A
comparison of different interaction methods was conducted
by [10], gauging the fit of Fitts’ law when the interaction
medium varies. While the study found similar trends between
a mouse pointer and physical interactions with a target,
the index of performance for gestural interactions were
consistently below the other mediums due to participant
unfamiliarity with the technology.

Given that the interaction medium affects the participant’s
performance, there is an ongoing need to explore the effects
of various interaction mediums when designing experiments



to validate Fitts’ law. Specifically, in circumstances where
inertial effects are experienced during the interaction. This
work aims to identify whether the aforementioned effects
experienced by participants, coupled to the end-effector of a
collaborative robot, affect the predictive ability of Fitts’ law
during target directed movements. Furthermore, the effect of
the inertia on the the highly stereotyped characteristics pro-
duced by these movements will be explored, in particular the
human end-point trajectories and velocity profiles observed.

II. METHODOLOGY

A. Fitts’ law

Fitts’ law is a predictive model characterising target-
directed human movement [6]. The model is defined as:

MT = a+ b · log2
(
2D

W

)
, (1)

where MT is the movement time taken to reach a given
target, D is the distance from the target, and W is the width
size of the target. a and b are coefficients that are obtained
heuristically through linear regression for each person. Fitts’
law suggests that there is a relationship in human movement
that depends on D and W .

Id = log2

(
2D

W

)
, (2)

The rate of information exchange in the motor system can
then be calculated based on Shannon’s information theory
[11]. This produces the Index of Difficulty (Id), measured in
bits, indicating the amount of information associated with a
task. Equation 3 is the Index of Performance (Ip), which is
inversely proportional to the observed MT .

Ip =
Id
MT

. (3)

III. EXPERIMENTS

To observe the effects of the physical interaction medium
on participant performance, an experiment was designed for
human upper limb target-directed movements whilst coupled
to a robotic manipulator. This coupled arrangement can
be seen in robotic devices for rehabilitation [12] [13] and
Assistance-As-Needed systems for industrial applications
[14].

A. Experiment Setup

In the experiment, shown in Figure 1, participants inter-
acted with a 7 Degree-of-Freedom (DoF) robotic manipulator
(HAHN Rethink Robotics, Rheinböllen, Germany). A 6-
axis force-torque sensor (ATI Industrial Automation, Apex,
NC) was affixed between a bespoke handle and the end-
effector. The robot arm was programmed to enter a Cartesian
impedance control mode native to Rethink Robotics’ Intera
SDK. This constrained movements to the X-Y plane parallel
to the robot base at a height which was comfortable for seated
participants.

Three different target widths (18.75mm, 37.5mm, and
56.25mm) and distances (120mm, 180mm, and 240mm)

from the starting location of the end-effector were chosen for
this experiment. The targets used for the experiments were
arranged around the starting position of the participants hand.
Additionally, impossible-to-reach locations were considered,
thus removing targets that are occupied by the participants’
body as shown in Figure 2. The participants did not have any
prior knowledge of the possible target locations, and these
locations were never visually displayed to participants until
the experiment trials.

Fig. 2: The array of targets that participants were required to reach using the
handle affixed to the end-effector. The two planes, grey and black, represent
what the participants are shown during the experiments, and the array of
targets that is never revealed. The current position of the end-effector is
indicated by a filled white circle, while the center of the visual display is
represented by the outline of the red circle.

B. Human Participation Study

Ten healthy adults (9 males and 1 female) provided in-
formed consent to participate in a target-reaching experiment
approved by an ethics committee (UTS, Australia, approval
number ETH18-3029). All participants were right-handed,
and have no known neuromuscular or sensory disorders.

Participants were seated and instructed to keep their back
against the chair so the affixed handle in its starting location
is 0.55m away from their torso. Visual feedback for the
experiment was communicated via a monitor screen in front
of the participant, which displayed visual cues during the
experiment.

Participants were instructed to move an on-screen marker,
indicating the position of their hand, to the centre of a target
as accurately and as quickly as possible. The participants
were also instructed to move the handle towards the target
while maintaining trunk posture to minimise torso move-
ment. Specifically, they were asked move to the target in
a single motion, and to refrain from performing postural
corrective movements to improve their endpoint accuracy.

Prior to the experiment, a trial run was conducted so
participants could familiarise themselves with the setup and
experimental procedure. This is to help remove bias due to
unfamiliarity with the experiment conditions. Each partici-
pant was asked to perform 28 trials in the experiment accord-
ing to a predetermined sequence, which was only displayed



one-step-ahead and never displayed to the participant in its
entirety.

IV. RESULTS

Each target directed movement performed by the subjects
were analysed to obtain the cofficients of Fitts’ law. Table I
shows the participants’ Fitts’ law coefficients (FLC) (Equa-
tion 1), calculated using linear least squares.

FLC Participant #
1 2 3 4 5 6 7 8 9 10

a 0.75 0.96 1.41 0.26 0.92 0.92 1.09 1.09 0.79 0.75
b 0.17 0.02 0.19 0.55 0.15 0.18 0.07 0.07 0.09 0.06

TABLE I: The participants’ coefficients from Fitts’ law.

Although the Fitts’ law model is personalised, an aggrega-
tion of the measured mean movement time and the associated
Id for all participants are shown in Figure 3. The 95%
confidence interval for each participants’ movement time,
and the predicted movement times illustrates the relationship
between task difficulty and movement time with a R2 value
of 0.853. Furthermore, Table II shows the p-values associated
with Figure 3, demonstrating that the presence of inertia
during interactions yields an insignificant effect in this setup.

The targets for the trials were placed at one of three
distances away from the starting position, as indicated by
the 3 colors present in Figure 4(a). The shaded regions
indicate the variation of velocity profiles between partici-
pants, supporting the notion of personalised parameters for
Fitts’ law. An aggregated endpoint velocity performed by
participants was used to demonstrate the similarities that
exist during the initial stage of the trajectories, as well as
highlight the increase in peak velocity when the targets were
located further away from the starting point.

The average velocity profile for the samples shown in Fig-
ure 4(b) demonstrates the single peak, bell-curved velocity
profile nature of target directed movements. The two figures
shown within the figure possess the same Id, where target 1
is the first trial that uses that specified Id, and target 25 is the
last trial to use the Id. The trial for target 1 is shown in the
top figure of Figure 4(b) is slower to peak and converge to
within the 0.1m/s threshold than the trial for target 25 shown
in the graph below. This indicates that a learning component
is exhibited by participants, however this effect is minimal.

To analyse the trajectories performed during the reaching
motion, a subset of the targets were chosen. The targets
selected were those located directly in front of, and behind
the designated starting position of the trial. Although the
most direct path to the target was a straight line trajectory,
all participants exhibited curved paths toward the target.
Furthermore, the curved paths were not bound to either side
of the x axis as shown in Figure 4(c). The curved Carte-
sian trajectories are potentially an effect of the mechanical
configuration of the manipulator predisposing its motion to
either side of the plane.
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Fig. 3: The 95% confidence interval produced from the aggregation of mean
movement times from each participant. The circle markers, error bars, and
red asterisks indicate the sample mean movement time, bounds for the 95%
confidence interval, and movement times, respectively, as predicted by Fitts’
law.

V. DISCUSSION

This study aims to explore Fitts’ law, specifically the
model’s ability to predict human movement behaviour during
interactions that impose the effect of inertia.

The results from Figure 3 demonstrate that all predicted
movement times lie within the 95% confidence interval, and
the corresponding p-values shown in Table II indicate that
there is not enough evidence to conclude whether target
directed movements with an interface possessing a higher
inertia compared to conventional interfaces used for Fitts’
law studies (such as a stylus or a mouse).

However, participants still exhibit movement characteris-
tics associated with target directed movements, in particular
the bell curved velocity profile shown in Figure 4(a)(b).

p-values
Id 2.09 2.68 3.09 3.26 3.68 4.26 4.68

p-value 0.50 0.72 0.44 0.48 0.29 0.72 0.46

TABLE II: The p-values calculated from the aggregation of mean movement
times from each participant and the predicted movement time given by Fitts’
law.

One aspect to consider during the analysis of results
obtained from the experiments is the visual feedback type
provided to the participant. While the original experiment
by Fitts [6] relied on physical target touching using a stylus,
the experiments conducted utilise remote visual feedback.
Without a physical target, participants relied on hand-eye
coordination to estimate the location of the end-effector and
target in Cartesian space.

The effects of the interaction medium can be characterised
by the noisy velocity profile. It is hypothesised that the
features from the interaction can be attributed to the robotic
manipulator possessing Series Elastic Actuators. The elas-
ticity from the springs within each joint can create potential
parasitic dynamics when participants interact with the device.
This contrasts to traditional Fitts’ law tests which have
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Fig. 4: (a) The average velocity profile performed by all participants against the distance of the end-effector from the starting point. The shaded regions
indicate the standard deviation for the 3 target distances that surrounded the starting point. (b) The average velocity profile of all participants between an
earlier trial vs. a later trial. The bounds of the standard deviation are indicated by the thinner line width, where the shaded region encapsulates the standard
deviation. (c) Variations in participant trajectories as they reach two different targets. Both targets are a pure translation along the y-axis, in front (left) of
and behind (right) the starting position of [0,0]. The cyan square represents the size of the target for each respective trial.

extensively explored human computer interactions which
rely on interaction mediums without significant inertia and
internal dynamics.

Additionally, the configuration of the manipulator pro-
duces varying inertia at the endpoint, thus affecting its
susceptibility to move to either side of the x-axis. However,
it can be seen that participants correct this motion in an
attempt to finish the motion within the specified target, this
correction adds another aspect that participants must consider
during their movements.

It is worthwhile to disclose that the original design of ex-
periments for Fitts’ law subjected participants to “rapid and
uniform responses that have been highly overlearned” [6].
This provided an experimental situation which was posited
to be only limited by the capacity of information transfer in
the motor system.

VI. CONCLUSION

This paper explores the observed measurements and trends
during target-directed movements with respect to Fitts’ law.
Although the presence of inertia during the interactions had
no observable effect on Fitts’ law’s predictive power, and
the well-observed bell-curved velocity profiles were main-
tained by all participants. Future work will seek to explore
the dynamics of interactions within a coupled system, and
incorporate simple metrics to enhance interactions between
human-robot dyads, enabling improved protocols for therapy
and rehabilitation incorporating physically assistive robots.
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