
  

  

Abstract— Cerebrovascular Reactivity (CVR), the 

responsiveness of blood vessels to a vasodilatory stimulus, is an 

important indicator of cerebrovascular health. Assessing CVR 

with fMRI, we can measure the change in the Blood Oxygen 

Level Dependent (BOLD) response induced by a change in CO2 

pressure (%BOLD/mmHg). However, there exists a temporal 

offset between the recorded CO2 pressure and the local BOLD 

response, due to both measurement and physiological delays. If 

this offset is not corrected for, voxel-wise CVR values will not be 

accurate. In this paper, we propose a framework for mapping 

hemodynamic lag in breath-hold fMRI data. As breath-hold 

tasks drive task-correlated head motion artifacts in BOLD fMRI 

data, our framework for lag estimation fits a model that includes 

polynomial terms and head motion parameters, as well as a 

shifted variant of the CO2 regressor (±9 s in 0.3 s increments), 

and the hemodynamic lag at each voxel is the shift producing the 

maximum total model R2 within physiological constraints. This 

approach is evaluated in 8 subjects with multi-echo fMRI data, 

resulting in robust maps of hemodynamic delay that show 

consistent regional variation across subjects, and improved 

contrast-to-noise compared to methods where motion regression 

is ignored or performed earlier in preprocessing.  

 
Clinical Relevance— We map hemodynamic lag using breath-

hold fMRI, providing insight into vascular transit times and 

improving the regional accuracy of cerebrovascular reactivity 

measurements. 

I. INTRODUCTION 

Cerebrovascular reactivity (CVR), the responsiveness of 

blood vessels to a vasodilatory stimulus, is rapidly becoming 

an important biomarker of cerebrovascular health [1-3]. One 

non-invasive approach to assessing CVR uses simple 

breathing tasks (e.g. short breath-holds or deep breaths) to 

modulate CO2 in a subject-directed but predictable manner 

[4]. The blood oxygen level dependent (BOLD) functional 

MRI response is commonly used to assess the dilatory 

response induced by hypercapnia. The end-tidal partial 

pressure of CO2 (PETCO2), a non-invasive surrogate of arterial 

CO2, is typically convolved with a hemodynamic response 

function and input into a generalized linear model (GLM) to 

estimate CVR (%BOLD/mmHg). However, there exists a 
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temporal offset between the PETCO2 measurement and the 

local BOLD response due to an inherent delay between CO2 

exhalation inside the scanner and CO2 recording outside 

(measurement delay), systemic changes in blood gases which 

travel with blood to arrive at local brain regions (vascular 

transit delay), and local arterioles responding to blood gas 

levels differently (vasodilatory dynamics). To improve 

estimation of CVR amplitude we need to correct for this 

temporal offset. This challenge has been addressed in multiple 

ways in the literature. Simple averaging of breath-hold data 

was used to map CVR time-to-peak in healthy subjects [4], 

revealing consistent regional variability in CVR lags. In CO2 

inhalation studies, Transfer Function Analysis has been used 

to measure the phase of the BOLD response [5], and multi-

parametric hemodynamic information including Bolus 

Arrival Time has been extracted using iterative linear 

regression [6]. The phase of the BOLD response to a 

sinusoidal CO2 paradigm efficiently provides similar 

information [7]. The algorithm Rapidtide uses recursive 

cross-correlation methods to ascertain lags between 

voxelwise fMRI data and a reference timeseries [8]; in gas 

inhalation studies where PETCO2 acts as the reference, this 

algorithm successfully maps CVR latency in control and 

clinical populations, highlighting that hemodynamic lag is a 

sensitive measure of regional pathology [9]. In resting state 

data, Rapidtide can estimate systemic vascular processes via 

the global fMRI signal and extract similar hemodynamic lag 

maps [10]. Yet, the global fMRI signal might also include 

severe motion-related confounds and irrelevant physiological 

processes that can degrade the quality of the estimates.  An 

alternative GLM approach to optimize lag during CVR fitting 

proposed the orthogonalization of the reference PETCO2 signal 

to the motion parameters [11]. Although this approach 

showed reproducible measures of BOLD CVR, the modified 

PETCO2 signal can potentially bias CVR amplitudes. 

In this paper, we estimate the hemodynamic lag in breath-hold 

BOLD fMRI data while preserving semi-quantitative 

measures of CVR amplitude. Breath-hold CVR experiments  
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require minimal additional equipment compared to gas 

inhalation, and may provide more robust lag estimates than 

resting state data [12], making them an attractive approach for 

clinical and research settings. However, subjects tend to take 

deep recovery breaths after the breath-hold, which can lead to 

severe task-correlated head motion [4]. To address this, we 

identify the optimal temporal shift between a PETCO2 model 

and the BOLD time-series for every voxel, based on 

maximizing full model fit within physiological constraints. 

Unlike averaging, cross-correlation or regression techniques 

currently in the literature, we construct and fit a regression 

model that includes nuisance polynomial terms and head 

motion parameters as well as a shifted variant of the PETCO2 

regressor, without orthogonalization. While motion 

regression is a typical preprocessing step, having sequential 

steps for denoising and lag estimation, as done in cross-

correlation approaches, might lead to biased estimates and/or 

reintroduction of motion effects [13]. Due to task-correlated 

motion in breath-hold data, with an unknown temporal offset 

between local motion-related fMRI artifacts and PETCO2 

recordings, simultaneous fitting more accurately addresses 

these collinearities [13]. We compare our simultaneous fitting 

approach to other lag-optimization strategies incorporating 

motion correction in the literature. Finally, we demonstrate 

consistent regional variability in hemodynamic lag across 

subjects, examine the contrast within lag maps, and show how 

accounting for lag impacts regional CVR estimates.  

II. METHODS 

A. Data Acquisition   

Ten neurotypical subjects (5F, aged 25-40y) were scanned on 

a 3T Siemens PrismaFit MR scanner. In the CVR scan, a 

multi-echo gradient-echo echo-planar imaging BOLD fMRI 

scan (ME-fMRI) was acquired (340 volumes, TR = 1.5 s, TEs 

= 10.6/28.69/46.78/64.87/82.96 ms, FA = 70°, MB = 4, 

GRAPPA = 2, 52 slices, Partial-Fourier = 6/8, FoV = 211x211 

mm², voxel size = 2.4x2.4x3 mm³). High-resolution T2-

weighted (T2-w) Turbo Spin Echo and T1-weighted (T1-w) 

MP2RAGE images (176 slices, FoV read = 256 mm, voxel 

size = 1x1x1 mm³) were also acquired. The breath-hold 

paradigm [14] included 8 breath-hold trials (Fig. 1). Expired 

CO2 was sampled with a nasal cannula connected to a ML206 

ADInstruments gas analyzer and recorded at 100 kHz with a 

MP150 BIOPAC monitoring system.  

B. Data Pre-processing  

Analysis of Functional NeuroImages (AFNI, 19.3.5 ‘Nero’) 

and FMRIB Software Library (FSL, 5.0.9) were used. The 

T1-w and T2-w images were skull-stripped and co-registered. 

The T1-w image was segmented with Atropos [15] to create 

masks of gray matter (GM) and white matter (WM). The T1-

w image was normalized to the 2.5mm isotropic MNI152 

template while the T2-w volume was co-registered to a skull-

stripped EPI single-band reference image (SBRef). Head re-

alignment to the SBRef was performed on the first echo and 

applied to the other volumes with MCFLIRT and FLIRT. 

Data from five echoes were optimally combined to improve 

the contrast to noise ratio[16] using tedana[17], and distortion 

field correction was performed using FSL topup procedure. 

C. Lag Optimization and CVR calculation 

The end-tidal peaks of the CO2 trace were automatically 

identified and manually inspected. The PETCO2 trace was 

down-sampled to 40 Hz for ease of handling, demeaned and 

convolved with the canonical HRF (PETCO2hrf) (Python3). 

PETCO2hrf was shifted to maximize the cross-correlation with 

the up-sampled average GM time-course (bulk shift) in order 

to account for measurement delay and a general vascular 

transit delay. Then, 60 shifted versions of PETCO2hrf were 

created, between ±9 s from the bulk shift, with an increment 

of 0.3 s (fine shift). A range of ±9 s is based on previous 

literature [e.g. 4, 9, 10, 11, 18], finding few consistent reports 

of relative lags of ±8 s in healthy subjects. For each shifted 

PETCO2hrf trace, a generalized linear model (GLM) was 

constructed including: a shifted PETCO2hrf regressor (down-

sampled to TR), 6 realignment parameters and their 

derivatives (demeaned), and up to 3rd order Legendre 

polynomials. The resulting GLM design matrices, identical 

except for fine shifting of PETCO2hrf, were fit to the optimally 

combined ME-fMRI data (3dDeconvolve). The optimal fine 

shift at each voxel was identified as maximizing the full 

model coefficient of determination (R²) to account for 

possible collinearities between regressors [19]. Then, these 

lag maps were clipped at ±8.4 s to remove voxels in which 

optimization resolved at or adjacent to the boundary, where 

fit may not be truly optimized and literature suggests lag may 

not be physiologically plausible. The beta coefficient of the 

PETCO2hrf regressor at optimum shift was retrieved and 

scaled by the fitted mean of that voxel timeseries. This created 

an optimized hemodynamic lag map and a lag-corrected CVR 

map in %BOLD/mmHg, with associated CVR t-statistics. We 

termed this lag optimization procedure simultaneous motion 

fitting (LagOpt-SimMot) and compare it with an un-

optimized model only applying the bulk shift to the PETCO2hrf 

regressor (NoOpt). We also compare it to a GLM with no 

motion regression (LagOpt-NoMot) and an approach that 

included only shifted PETCO2hrf regressors in the GLM but 

regressed out motion parameters and Legendre Polynomials 

beforehand, i.e. a sequential approach (LagOpt-SeqMot). 

D. Group maps and summary statistics  

CVR maps, t-statistic maps and lag maps were normalized to 

the MNI template, then averaged across subjects. Group 

Figure 1. Schematic of the breath-hold paradigm. Participants were cued 
visually within the scanner. The brief exhalation after the hold is important 
for obtaining a PETCO2 estimate of the hypercapnia induced by each hold. 
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average CVR maps do not include voxel data from subjects 

where lag was deemed implausible, or where the CVR fit was 

not deemed significant. Un-optimized (bulk shift only) CVR 

maps were thresholded at t>1.65 (p<0.05, 313 DoF). To 

account for multiple comparisons, lag-optimized (bulk and 

fine shift) CVR maps were thresholded at t >3.164, equivalent 

to p <0.05 adjusted with Šidák correction [12] (313 DoF). 

Four regions of interest (ROIs) were created by segmenting 

the MNI template into GM and WM (eroded with a 4mm 

gauss kernel to avoid partial volume effects). A mask of the 

putamen (Harvard-Oxford Subcortical structural atlas) and a 

mask of cerebellar GM (Cerebellar MNI atlas) were obtained, 

and both subtracted from the GM mask. Putamen and 

cerebellum ROIs were chosen due to their previously reported 

earlier and later hemodynamic lags, respectively [4]. For each 

subject, mean values over each ROI were extracted from lag-

optimized CVR and un-optimized CVR maps, and paired t-

tests were done to assess statistical differences. Similar maps 

were created for LagOpt-NoMot and LagOpt-SeqMot. The 

Contrast to Noise Ratios (CNR) of lag values between ROIs, 

and CVR in each ROI, were compared across NoMot, SeqMot 

and SimMot, and paired t-tests assessed statistical differences. 

III. RESULTS 

Two subjects were excluded due to poor task performance, 

leaving eight subjects for final analysis (4F, age 25-40y). 

Summary lag and CVR statistics are given in Table 1. WM 

has a delayed response compared to GM and the putamen and 

cerebellum demonstrate much earlier and later responses, 

respectively. Average CVR significantly increases after lag 

optimization (Table 1, Fig. 2). Thus, fine correction for lag 

variability improves local CVR estimates that would 

otherwise be underestimated. Fig. 3A shows CVR and lag 

maps for an example subject and group averages. Fig. 3B 

compares lag and optimized CVR maps across the SimMot, 

SeqMot and NoMot methods, with accompanying CNR 

estimates in Table 2. Lag CNR increased using the SimMot 

method, however only GM-Cerebellum contrast reached 

significance, showing an average 18.8% increase. Average 

CVR values were lower in SimMot compared to both SeqMot 

and NoMot for GM and Cerebellum (t(7) > 3, p<0.05). 

IV. DISCUSSION 

Hemodynamic lag can be successfully mapped in breath-hold 

fMRI data. Our approach simultaneously fits for CO2 CVR 

effects and head motion to reduce the bias of task-correlated 

motion artifacts in shift optimization. After lag optimization, 

TABLE I.  OPTIMIZED LAG VALUES (AVERAGED OVER EACH ROI) AND 

CVR VALUES WITH AND WITHOUT LAG OPTIMIZATION. VALUES ARE 

MEAN±STANDARD DEVIATION ACROSS SUBJECTS. 

ROI 
SimMot 

Lag (sec) 

CVR (%BOLD/mmHg) 

SimMot NonOpt 

WM 0.48 ±0.82 0.16 ±0.03 0.09 ±0.02 a 

GM -1.30 ±0.56 0.38 ±0.09 0.24 ±0.06 a 

Putamen -2.88 ±1.12 0.28 ±0.07 0.18 ±0.05 a 

Cerebellum  1.53 ±0.72 0.31 ±0.07 0.19 ±0.04 a 

a. SimMot - NonOpt: significant t-test, DoF=7, p<0.0001, two-tailed. 

TABLE II.  LAG CNR COMPARED BETWEEN DIFFERENT LAG OPTIMIZED 

METHODS. VALUES ARE MEAN±STANDARD DEVIATION ACROSS SUBJECTS. 

 

ROI 1-ROI 2 

CNRa  

SimMot SeqMot NoMot 

GM-WM 0.52 ±0.21 0.46 ±0.26 b 0.49 ±0.25 b 

GM-Putamen 0.47 ±0.22 0.44 ±0.21 b 0.44 ±0.21 b 

GM-Cerebellum 0.82 ±0.15 0.69 ±0.17 c 0.69 ±0.16 c 
a. CNR =  |MeanROI1 - MeanROI2| / StdevAllROIs   

b. SimMot-SeqMot or SimMot-NoMot: non-significant t-test, DoF=7, p>0.05, two-tailed. 

c. SimMot-SeqMot or SimMot-NoMot: significant t-test, DoF=7, p<0.05, two-tailed. 

 

a CVR increase was seen in all ROIs, demonstrating this is an 

important step to ensure accurate regional CVR values. Lag 

maps were spatially consistent with previous findings using 

alternative algorithms and hypercapnic stimuli [4, 18]. The 

different lag optimization methods (simultaneous, sequential 

and no motion regression) showed subtle variation. However, 

lag CNR was always higher using our simultaneous fitting 

approach, most notably in the cerebellum, a region that is 

particularly prone to motion artefacts. We also conjecture that 

NoMot and SeqMot found higher CVR due to task-correlated 

motion effects that are not properly handled by these models. 

We demonstrate that accurate measurement of CVR in a 

subcortical region using transient PETCO2 manipulations must 

account for the vasodilatory lag being different from cortical 

GM. One quarter of all first ischemic infarcts are subcortical, 

and measuring CVR in these regions may be particularly 

important [3]. In line with the literature, we searched for an 

optimal lag between ±9 s relative to the bulk shift. This range 

should be adjusted in clinical or healthy aging studies to 

adequately characterize expected pathological transits [9], but 

the maximum shift should not be longer than half a breath-

hold period, as this may lead to spurious negative correlations 

between PETCO2hrf and fMRI.  Negative CVR values were 

not considered here, however, the latency of these effects can 

facilitate the discrimination of neurovascular versus purely 

vascular signals in fMRI data [20], and these phenomena will  

be explored in future work. Necessary future work will assess 

feasibility and utility of these methods in clinical populations. 

 
Figure 2. (A) Distribution of group mean lag values in each ROI. WM response is later than GM. Relative to the rest of the GM, the response in the 

putamen is earlier and the response in the cerebellar GM is much later. (B) Distribution of group mean CVR values with (light colors) and without (dark 

colors) incorporating the optimal lag. 
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Figure 3. (A) Maps of hemodynamic lag (clipped at ±8.4 s) and CVR, before and after optimization of the temporal shift with the proposed approach 

(SimMot), for a representative subject and group average. Note the increased contrast between WM and GM after optimal shift, indicating an 

underestimation of CVR in most brain regions. (B) Group average maps of hemodynamic lag (second row) and CVR (third row) after optimal shift for 
simultaneous motion regression (SimMot), sequential motion regression (SeqMot) and no motion regression (NoMot). The maps of the first row depict the 

number of subjects contributing to each voxelwise estimate of lag and CVR after boundary conditions are considered, showing more subjects consistently 

at the boundary condition at the edges of the brain and WM. SimMot results in improved regional contrast in the lag maps as quantified in Table 2. 
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