
  

 

Abstract— In the last decade, accurate identification of motor 

unit (MU) firings received a lot of research interest. Different 

decomposition methods have been developed, each with its 

advantages and disadvantages. In this study, we evaluated the 

capability of three different types of neural networks (NNs), 

namely dense NN, long short-term memory (LSTM) NN and 

convolutional NN, to identify MU firings from high-density 

surface electromyograms (HDsEMG). Each type of NN was 

evaluated on simulated HDsEMG signals with a known MU 

firing pattern and high variety of MU characteristics. Compared 

to dense NN, LSTM and convolutional NN yielded significantly 

higher precision and significantly lower miss rate of MU 

identification. LSTM NN demonstrated higher sensitivity to 

noise than convolutional NN. 

Clinical Relevance— MU identification from HDsEMG 

signals offers valuable insight into neurophysiology of motor 

system but requires relatively high level of expert knowledge. 

This study assesses the capability of self-learning artificial 

neural networks to cope with this problem. 

I. INTRODUCTION 

Neural networks (NNs) are rapidly evolving in the field of 
pattern recognition. There are multiple reasons for this, but the 
two most important ones are new mathematical models of NNs 
and the constantly increasing processing power of computers 
[1], [2]. NNs have significantly improved the state-of-the-art 
in pattern recognition, especially in the fields of image 
processing, speech recognition, and natural language 
processing [2], [3], [4]. NNs with multiple layers and a 
complex layer structure have been developed. Among them, 
convolutional NNs have been very successful in processing of 
two or more-dimensional input data [5], [6], [7].  

Long short-term memory (LSTM) NNs represent another 
complex NN architecture. They are recurrent NN and can 
solve the convergence problems that simple recurrent NNs 
suffer from. This makes LSTM NNs suitable for use in speech 
recognition, handwriting recognition and text-to-speech 
synthesis, among other applications [8], [9].  

Dense NNs have been extensively used in the analysis of 
surface electromyograms (EMG) and in human-machine 
interfaces for classification of different movements from EMG 
signals [10], [11]. On the other hand, their use in 
decomposition of EMG signals into contributions of individual 
motor units (MUs) is still relatively scarce, at least to the best 
of our knowledge. 
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Indeed, identification of MU firing from surface EMG 
proved to be a difficult computational problem. First, reliable 
MU identification requires recording of EMG signals by 
several tens of uptake electrodes – so called  high-density 
surface EMG (HDsEMG) [12]. Second, existing HDsEMG 
decomposition methods are based on relatively complex 
mathematical models and iterative optimizations of MU filters. 
When applied to the HDsEMG, these filters yield spike trains 
of individual MUs, with spikes denoting MU firings. In fact, 
each MU filter defines a linear combination of spatio-temporal 
HDsEMG samples that yields a MU spike train. As the spike 
train of an individual MU is more sparse that the merged trains 
of two or more MUs, the MU filters get iteratively optimized 
by increasing the non-Gaussianity of estimated MU spike train 
[13]. Thus, MU filters can also be estimated by NN, but require 
reinforced learning as MU firings are not a priori known. 

When building a MU filter, the existing decomposition 
techniques take HDsEMG samples from local temporal 
support of a few ms. This support is defined by the so called 
extension factor F and is equal for all the HDsEMG channels, 
regardless of the actual information in the channel [13]. On the 
other hand, recurrent NN are theoretically capable of 
combining HDsEMG samples from much larger temporal 
supports [14] but it is not known whether this improves the 
estimation of MU spike trains.    

In this study, we compared recurrent and non-recurrent 
NNs, namely dense NN, LSTM and convolutional NN and 
assessed their capability to learn MU firings from the 
HDsEMG signals in supervised fashion. For this purpose, we 
assumed that several (but not all) firings of individual MU are 
a priori known. To ensure the controlled test conditions and 
reliable reference data, we limited our study to synthetic 
HDsEMG signals that were generated by the advanced 
cylindrical volume conductor model described in [15]. 

II. NEURAL NETWORKS 

Three types of NNs were evaluated on HDsEMG signals 
that were temporarily extended by adding F-1 delayed 
repetitions of each HDsEMG channel [13]: 

𝒚(𝑛) = [𝑦1(𝑛) … 𝑦1(𝑛 − 𝐹 + 1) … 𝑦𝑀(𝑛 − 𝐹 + 1)]𝑇  (1) 

By following the recommendation in [13], the extension 

factor F was set to 10. Afterwards, the correlation matrix of 

extended HDsEMG measurements was calculated  
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𝐂𝒚 = 𝐸(𝒚(𝑛)𝒚𝑇(𝑛))             (2) 

where E(.) stands for mathematical expectation. The extended 

measurements were whitened [13]: 

  𝒛(𝑛) = 𝑠𝑞𝑟𝑡𝑚(𝐂𝒚
−1)𝒚(𝑛)            (3) 

with sqrtm(.) function denoting the matrix square root. The 

generated HDsEMG signals had 90 channels. After the 

extension with a factor F=10, each sample of 𝒛(𝑛) comprised 

900 values. 

A.  Dense NN 

The feedforward dense NN used in this study received 1 
sample of 𝒛(𝑛) per iteration as an input. The NN comprised 5 
dense layers, each followed by a dropout layer, except for the 
last one. The detailed structure of dense NN is presented in 
Fig. 1. 

 

 

 

Figure 1.  Layers of dense NN, named as in the Tensorflow machine 
learning package [16]. The output size of each layer is written below its 

graphical representation. 

 

B. LSTM NN 

The LSTM NN received 15 samples of 𝒛(𝑛) per iteration (a 
matrix with dimensions 900 × 15) as an input. The NN 
comprised 2 LSTM layers and 3 dense layers, each followed 
by a dropout layer, except for the last one. The detailed 
structure of LSTM NN is depicted in Fig. 2. 

 

 

 

Figure 2.  Layers of LSTM NN, named as in the Tensorflow machine 

learning package [16]. The output size of each layer is written below its 
graphical representation. 

 

C. Convolutional NN 

Convolutional NN received 15 samples of 𝒛(𝑛) per iteration 
(a matrix with dimensions 900 × 15) as an input. It comprised 
2 convolutional layers, each followed by a max pooling layer 

and a dropout layer. It also contained a flatten layer and 3 
dense layers, each followed by a dropout layer, except for the 
last one. The detailed structure of the convolutional NN used 
in this study is presented in Fig. 3. 

 

 

 
Figure 3.  Layers of convolutional NN used in this study, named as in 

the Tensorflow machine learning package [16]. The output size of each 

layer is written below its graphical representation. 

 
In all the presented NNs and each NN layer we used 

hyperbolic tangent activation function. The output values of 
this function are from the interval (-1, 1), so after the last layer 
the round function was used to translate the NN outputs to 
binary values that indicate MU firings. Adam optimizer [17] 
was used for training. Its initial learning rate was set to 0.001, 
whereas parameters β1, β2 and ε were set to 0.9, 0.999 and 10-

7, respectively.  

To measure the error between the real and predicted MU 
spike train, mean squared error was used as a loss function. 
The batch size was set to 128. The number of training epochs 
was set to 2000, but the training was interrupted for less epochs 
if there was no improvement in the loss metric on the 
validation dataset for 50 consecutive iterations. 

III. HDSEMG SIMULATION AND DATA ANALYSIS 

A. Simulated HDsEMG Signals 

Selected NNs were evaluated on synthetic signals with 
known MU firing patterns. The biceps brachii muscle with 
randomly distributed 200 active MUs was simulated [18], 
using the cylindrical volume conductor model [15]. The 
simulated muscle with elliptical cross-section was 130 mm 
long, 30 mm wide and 15 mm deep. Fiber density was set to 
20 fibres/mm2 [18]. All the muscle fibers belonging to the 
same MU shared the same conduction velocity, which was 
normally distributed (4.0 ± 0.3 m/s) across simulated MUs. 
The size of MUs ranged from 24 to 2408 fibers and was 
distributed according to the Henneman’s size principle [19]. 
The innervation zone was in the longitudinal center of the 
simulated muscle, with the spread set to 5 mm. The simulated 
skin and subcutaneous fat layer were 1 mm and 4 mm thick, 
respectively. 

Firing pattern of each MU was generated with the model 
proposed in [20]. Muscle excitation level was set to 30 %, 
which resulted in 155 active MUs. The 50 s long HDsEMG 
signals were sampled at 2048 samples/s and detected by an 
array of 10×9 circular electrodes with 1 mm diameter and 5 
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mm interelectrode distance. The array was centered over the 
simulated muscle.  

Four simulations of HDsEMG signals were conducted. In 
each simulation, MUs were randomly distributed in the muscle 
tissue. In order to evaluate NNs at different noise levels, noise 
with SNR of ∞, 30 and 20 dB was added. Generated HDsEMG 
signals are exemplified in Fig. 4. 

 

 

Figure 4. A) Representative example of synthetic HDEMG signal at 

excitation level of 30 % and SNR of 30 dB, used on the input of tested NNs. 
B) Representative example of MU firings at the output of the tested NN. For 

clarity reason, only 2 s of each signal are depicted. 

 

Training, validation and test datasets were created from 
HDsEMG epochs with the length of 25 s, 12.5 s and 12.5 s, 
respectively. On average, there were 710 ± 195, 355 ± 97 and 
351 ± 98 MU firings in these datasets, respectively. 

To limit the computational time and increase the efficiency 

of NN learning, the spike trains of simulated MUs were first 

assessed by Linear Minimum Mean Square Error (LMMSE) 

estimator [13]. This estimator is Bayesian optimal among the 

linear estimators, but can only be applied to synthetic 

HDsEMG data, as it uses the simulated MU firing patterns to 

learn MU filter. Quality of MU spike trains, estimated by 

LMMSE was assessed by the previously proposed Pulse-to-

Noise Ratio (PNR) [21]: 

 𝑃𝑁𝑅 (�̂�j(𝑛)) = 10 ∙ log (
𝐸(�̂�𝑗

2(𝑛)|
tj(𝑛)=1

)

𝐸(�̂�𝑗
2(𝑛)|

tj(𝑛)=0
)

), 

where �̂�j(𝑛) is the estimated  j-th MU spike train, �̂�𝑗
2(𝑛)|

�̂�𝑗(𝑛)=1
 

is the energy of MU spikes and �̂�𝑗
2(𝑛)|

�̂�𝑗(𝑛)=0
 is the energy of  

noise in the spike train. Only MUs that were estimated from 
HDsEMG signals by LMMSE and exhibited the PNR value 
above 28 dB [21] were used for NN training. As a result, 49 ± 
5, 9 ± 2 and 5 ± 3 MUs per generated HDsEMG signal were 
used for NN training at SNR of ∞, 30 and 20 dB, respectively.  

B. Data analysis 

The performance of NN was assessed by identifying true 

positive (TP), false positive (FP) and false negative (FN) 

firings with the tolerance set to 0.5 ms. Afterwards, precision 

(Pr) and miss rate (MR) were calculated for each identified 

MU: 

 𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,    𝑀𝑅 =

𝐹𝑁

𝐹𝑁+𝑇𝑃
 , 

In more than 67 % of MUs, the normal distribution of Pr 
and MR was rejected by Lilliefors test. Consequently, 
Friedman test with Bonferroni correction and p-value < 0.05 
was used for statistical comparison of results of different NNs. 

 

IV. RESULTS 

The results of NNs evaluation are exemplified in Fig. 5 and 
reported in Table I.  

 

 

Figure 5. Firings of two MUs (1, 2), identified by dense (a), LSTM (b) and 

convolutional NN (c). Filled circles represent TP firings, empty circles FN 

firings, and stars FP firings. Gray circles represent a TP firing with 

identification tolerance set to 5 samples. For clarity reason, only 2 s of MU 

firing patterns are depicted. 

V. CONCLUSION 

All the tested NNs demonstrated relatively high precision 

in MU identification, however the miss rates were not 

negligible, especially when noise was added to the HDsEMG 

signals (Table I). LSTM and convolutional NN had 

significantly higher precision and significantly lower miss 

rate than dense NN. On the other hand, LSTM and 

convolutional NN did not produce significantly different 

results, except in the case of miss rates at SNR of 20 dB, 

where convolutional NN significantly outperformed the 

LSTM.  

The extension factor F is commonly used in HDsEMG 

decomposition algorithms to improve the conditionality of the 

HDsEMG mixing process [13]. With its increase, the size of 

the input data to the NN also increases. Consequently, there 

are more learning parameters in the first NN layer. This 

potentially leads to slower learning, but potentially improves 

the decomposition performance [13]. In our study, the 

preselected temporal support of F = 10 HDsEMG samples 

proved to be large enough and, when compared to other two 

tested NNs, the recurrent connections in LSTM did not 

significantly increase the HDsEMG decomposition 

performance. On the contrary, it even seems that they 

increased the sensitivity of NN to noise (Table I). Further 

testing of different extension factors F exceeds the scope of 

this study.  
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TABLE I.  PRECISION (PR) AND MISS RATE (MR) FOR DENSE, LSTM AND 

CONVOLUTIONAL NN AT SNR OF ∞, 30 AND 20 DB. 

SNR 

(dB) 
NN type 

Metric 

Pr (%) MR (%) 

∞ 

Dense 95 ± 4b, c 19 ± 16b, c 

LSTM 99 ± 1a 7 ± 6a 

Convolutional 99 ± 1a 7 ± 7a 

30 

Dense 92 ± 8b, c 27 ± 26b, c 

LSTM 99 ± 2a 16 ± 8a 

Convolutional 99 ± 3a 16 ± 10a 

20 

Dense 90 ± 6b, c 39 ± 31b, c 

LSTM 97 ± 5a 26 ± 20a, c 

Convolutional 98 ± 3a 23 ± 14a, b 

a – significantly different from Dense NN; b – significantly different from 
LSTM NN; c – significantly different from Convolutional NN. 

 

The speed of convergence was faster for LSTM and 

convolutional NN than for dense NN. The average number of 

training epochs was 1273 ± 296, 881 ± 204 and 972 ± 317 for 

dense, LSTM and convolutional NN, respectively. 

One of the limitations of this study was relatively small 

learning dataset used for NN training. All the tested NNs were 

composed of multiple layers that require large learning sets. 

With smaller learning sets, NN fitting becomes easier, but the 

knowledge generalization deteriorates significantly. In 

HDsEMG decomposition, the length of the learning set is 

always a compromise between the experimental costs and the 

efficiency of decomposition. Furthermore, all the evaluated 

NNs have one obvious drawback. Similar to LMMSE, they 

all need MU firings for learning. This can be avoided with the 

use of unsupervised type of learning, but to do this, different 

types of NNs are required. 

In conclusion, recently developed NNs are powerful tool 

for addressing different pattern recognition problems. One 

such problem is direct estimation of MU firings from 

HDsEMG. In this study, we tested whether recurrent NNs 

outperform the non-recurrent ones. The results on HDsEMG 

signals that were temporarily extended by factor F=10 

rejected this hypothesis and demonstrated that the recurrent 

NNs might be more sensitive to noise than the non-recurrent 

ones. Further studies are required to better understand the 

optimal NN architecture and the compromise between the 

extension factor F, efficiency of HDsEMG decomposition 

and the size of the learning sets in NNs. 
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