
  

 

Abstract— Lung cancer is a major public health burden and 

among the highest incidence and mortality rates of the cancers. 

MicroRNAs (miRNAs) play an important role in the 

development of lung cancer. The aim of this study was to 

investigate whether there was a potential causal relation between 

miRNAs and non-small-cell lung cancer (NSCLC). 1,026 

patients with NSCLC from The Cancer Genome Atlas (TCGA) 

were analyzed. NSCLC associated SNPs' allele scores were 

established, and candidate miRNAs were filtered from 

differential expression analysis. Mendelian randomization (MR) 

analysis was conducted for 5 candidate miRNA (hsa-miR-135b, 

hsa-miR-142, hsa-miR-182, hsa-miR-183 and hsa-miR-3607) 

and 76 candidate SNPs in lung adenocarcinoma (LUAD) group. 

According to the core assumptions of MR, there was no clear 

evidence of a causal relation between the 5 candidate miRNAs 

and LUAD. The reads per million miRNAs mapped (RPM) level 

of candidate miRNAs changed less than 3% per allele score. To 

our knowledge, this is the first study using the TCGA data set to 

investigate the causal relation between miRNAs and lung cancer 

using the MR approach, and also one of the first MR studies to 

use miRNA expression as an exposure factor, with the SNPs as 

instrumental variables. 

I. INTRODUCTION 

Lung cancer is the leading cause of cancer deaths in the 
world. Its etiology is multiple, including genetic and 
epigenetic damage, as well as tobacco smoking [1]. Non-
small-cell lung cancer (NSCLC) accounts for more than 85% 
of lung cancer [2]. Lung adenocarcinoma (LUAD) and lung 
squamous cell carcinoma (LUSC) are the most common types 
of NSCLC. LUAD is the most common type of lung cancer 
among the non-smokers, which accounts for about 40% of the 
total number of patients with lung cancer [3]. LUSC is not as 
common as LUAD, but its relation to smoking history is 
stronger than LUAD [4]. Moreover, studies have shown that 
LUSC is associated with gender and it is more common in men 
than in women [5]. Experimental and previous studies have 
shown that some microRNAs [6] and single nucleotide 
polymorphisms (SNPs) [7] are associated with lung cancer. 
However, not much previous study investigated whether there 
is a causal relation between microRNAs and lung cancer, 
particularly using Mendelian Randomization methodology 
with SNPs as an instrument. 

SNPs has been classified as commonly occurring (>1%) 
genetic variation in the general population, whereas the rare 
variants with obvious functional consequences on the protein 
have been classified as mutations [8]. SNPs are widely found 
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in the human genome, with an average of 1 out of every 500 
or 1,000 base pairs, with an estimated total of three million or 
more in the genome [8]. According to some epidemiological 
studies, lung cancer had been shown to be a typical 
environment-related disease. Cigarette smoking, air pollution, 
and sulfuric acid mist are important risk factors for lung cancer 
[6, 37-38]. Studies also reported that only a small number of 
non-smokers (10% - 15%), who suffered from lung cancer, 
were exposed to the same carcinogenic factors including tar, 
soot, arsenic, chromium, silica dust and asbestos [9]. This 
indicated that the existence of genetic susceptibility based on 
individual differences played an important role in the 
occurrence of lung cancer [9]. Studies have shown that the 
differential survivability and mortality of NSCLC are related 
to genetic variation such as SNPs, which can be used as a 
potential prognostic indicator or predictor. For example, 
POLA2+1747 GG/GA (rs487989) has the potential to be used 
as a prognostic biomarker of patient outcome in NSCLC 
pathogenesis [10]; BAG6 rs3117582 SNP is associated with 
lung cancer in Europeans and can be used as an independent 
predictor of lung cancer risk [11].  

MicroRNA (miRNA) is a class of non-coding single-
stranded RNA molecules with a length of about 22 nucleotides 
[12]. MiRNA acts as a negative regulator of gene expression 
by binding to 3'- UTRs of target mRNAs. MiRNAs involve in 
many crucial biological processes, including cell cycle, 
growth, death, stem cell differentiation, and stress response. In 
recent years, increasing evidence indicated that miRNAs 
mutations and dysregulations are associated with the 
occurrence and development of many complex human 
diseases such as Alzheimer’s disease [13], colorectal 
carcinoma [14], leukemia, etc. [15]. Studies have shown that 
the over or under expression of miRNAs in lung cancer tissues 
plays important roles in the development and progression of 
lung cancer [16]. Eight microRNAs were found to have 
prognostic effect on NSCLC (hsa-miR-375, hsa-miR-148a, 
hsa-miR-29b-1 and hsa-miR-584 had a prognostic effect on 
the prognosis of LUAD, and hsa-miR-4746, hsa-miR-326, 
hsa-miR-93 and hsa-miR-671 had prognostic effect on LUSC) 
[16]. Other studies have shown that compared with the healthy 
control group, the serum level of miR-182, miR-183 is 
significantly higher in patients with non-small-cell lung 
cancer, which may act as a sensitive and specific biomarker 
for the early diagnosis of non-small-cell lung cancer [17, 39-
40]. Although there have been many studies on lung cancer 
and microRNAs in recent years, the research is not thorough 
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enough, and the role of some microRNAs in lung cancer is still 
unclear. Some studies suggested that hsa-miR-9-1 and hsa-
miR-9-2 are overexpressed in lung cancer [18-19]. However, 
some studies suggested that hsa-9 group miRNAs had similar 
effects as hsa-let-7g, which is associated with NFκB1, and 
significantly downregulated in NSCLC [20]. The 
transformation of the SNP that is associated with the risk of 
lung cancer has been demonstrated to be related to miRNAs. 
For example, the transformation (from rs2240688A to 
rs2240688C) is associated with hsa-miR-135a/b and is 
demonstrated to be associated with the risk of lung cancer [21], 
which may be a functional biomarker for predicting the risk 
and prognosis of lung cancer. At present, databases such as the 
Human microRNA Disease Database (HMDD) [22] and 
algorithms for dissecting human miRNA-disease associations 
have been developed, but their limitations are that most of 
them only show the association between miRNAs and disease 
(up- / down- regulation of miRNAs), without resolving 
whether the association is causal or not [23]. However, causal 
inference is essential in cancer research. It is necessary to 
understand whether the change in miRNAs expression is 
before cancer occurs (as a predictive indicator) or after cancer 
syndrome (as a biomarker). Therefore, causality analysis is 
very important to enhance the understanding of the role of 
miRNA in specific cancer mechanisms. 

Mendelian randomization (MR) is an analytical method 
based on genetic variables (instrumental variables) to 
determine whether the correlation between observed risk 
factors and outcomes is causal or not [24]. Compared to the 
traditional experimental verification method, MR method is 
more concise, more intuitive and saves time. The selection of 
instrumental variables is critical to a successful MR analysis. 
Valid instrumental variables must be in accordance with three 
core assumptions: a) instrumental variables must be 
reproducible and strongly related to exposure; b) instrumental 
variables are not related to confounding factors; c) 
instrumental variables are related to the results only through 
exposure factors [25]. Mendelian randomization analysis 
consists of two main steps: i) to check three basic core 
assumptions; ii) to assess the causality between exposure and 
outcomes. In the HMDD database, there are 201 miRNAs 
related to LUAD, of which more than 150 miRNAs are not 
confirmed to be causal; 57 miRNAs that related to LUSC and 
only 50 miRNAs are not proved causal. Therefore, MR is a 
good analytical method to fill the gap of causal inference of 
miRNAs in the development of complex diseases such as lung 
cancer at this stage. 

In this study, we used MR methodology to examine the 
causal relation between miRNAs and two sub-types of 
NSCLC (LUAD and LUSC), using SNPs as an instrument. 

II. METHODS 

The overall analytical approach is illustrated in Fig. 1, 
representing data collection, data preprocessing, MR 
hypothesis validation, and MR analysis. The clinical data, 
miRNA expression data and part of Nucleotide Variation data 
of two sub-types of lung cancer, including LUAD and LUSC 
were collected from The Cancer Genome Atlas (TCGA, 
https://www.cancer.gov/tcga). The remaining part of Single 
Nucleotide Variation (SNV) data were collected from the 

NHGRI-EBI GWAS Catalog, which were used as reference 
data in this study (https://www.ebi.ac.uk/gwas/). All data were 
downloaded using the R package “TCGAbiolinks”.  

 
Figure 1.  The overall analytical approach. TCGA: The Cancer 

Genome Atlas; SNP: Single Nucleotide Polymorphism; miRNA: 

microRNA; GWAS: genome-wide association study; G: Candidate 

SNP list; U: Age, Gender, Ethnicity, Cigarettes per day, Years of 
smoking. 

A. Clinical Data Collection 

Clinical files of LUAD (n = 522) and LUSC (n = 504) were 
collected from TCGA. The diagnoses, treatments, 
demographic, and exposures information (including height, 
weight, smoking history, alcohol history, alcohol intensity, 
and BMI.) were included. Basic information of patients (for 
example, submitter id, gender, age, race, and ethnicity) and 
lifestyle information related to lung cancer (for example, 
cigarettes per day, and years of smoking) were extracted and 
recorded. There were 37% and 49% missing values in the 
“cigarettes per day”, and “years of smoking” variables, 
respectively. Multiple imputations were adopted to deal with 
the missing values. Briefly, this imputation method utilized the 
Monte Carlo algorithm to predict and fill the missing data 
according to different data types with different fitting and 
regression modes [26]. Morphology and tumor stage data were 
included in this missing value filling process. The network 
based on age, gender, race, ethnicity, morphology, tumor 
stage, cigarettes per day, and years of smoking is constructed, 
and the missing values in the network were simulated by 
generalized linear simulation method, and then a complete 
data set was generated. The distribution of clinical data is 
illustrated in Fig. 2, which shows the distribution of imputed 
data being similar to the original data, the applicability of 
Multiple Imputation method was demonstrated. 
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B. SNP Data Collection 

Single Nucleotide Polymorphism (SNP) data was collected 
from SNV data, including Hugo Symbol, reference allele, 
tumor risk allele, dbSNP ID, reported gene, risk allele, risk 
allele frequency, P-value). The candidate SNP lists of LUAD 
and LUSC were generated by sharing the same gene, risk allele 
frequency ≥ 0.5, P value ≤ 0.05. The SNPs that were not 
recorded in the dbSNP were excluded. 76 out of 763 SNPs 
from LUAD and 238 out of 1816 SNPs from LUSC were 
selected in the candidate SNP lists. The tumor risk allele was 
coded as 1 while the other allele was coded as 0. An allele 
score, which was calculated as the total number of risk alleles 
from the SNPs in the candidate SNP list was used. The allele 
score was used as the instrumental variable in the subsequent 
analysis. 

 

Figure 2.  Distribution of clinical data. Group 0 represents the data 

before imputation, group 1-4 represent the different iterations of 
imputation. Blue dots represent the original data, red dots denote 

imputed data. The distribution of imputed data is similar to the 

original data. 

C. MiRNA Data Collection 

MiRNA expression data was obtained using the R package 
“TCGAbiolinks”. There were 567 LUAD-associated miRNAs 
and 523 LUSC-related miRNAs. MiRNAs with the expression 
of 0 in more than 30% samples were excluded. The clinical 
data, SNP data and miRNA data were merged and 510 LUAD 
patients and 473 LUSC patients retained for subsequent 
statistical analyses. 

D. Differential Expression Analysis 

To estimate the relation between miRNAs and the two lung 
cancer sub-types, differential expression analysis (linear 
models for microarray data) was applied. Fold change and P-
value of each miRNA were calculated based on the reads per 
million miRNAs mapped (RPM) value. MiRNAs with more 
than 30% of samples’ RPM level are 0 were excluded, in order 
to avoid false high / low expression. 27 up-regulated miRNAs 
and 10 down-regulated miRNAs from LUAD samples, along 
with 50 up-regulated miRNAs and 15 down-regulated 
miRNAs from LUSC samples were screened out. The 

threshold was set as absolute log2 fold change ≥ 2 and P-value 
≤ 0.05. 

E. Mendelian Randomization 

The assumption that the instrumental variables had no 
relation with potential confounding variables for the 
association between SNPs and two sub-types of lung cancer, 
was tested. Linear regression method was used to estimate the 
associations between the allele score and the potential 
confounding variables (i.e. age, cigarettes per day, and years 
of smoking). Logistic regression was employed in 
corresponding analyses of binary covariates (i.e. gender, 
ethnicity). Linear regression was applied to calculate the P-
value and R2 value between SNPs or the allele score and 
miRNA expression level (RPM). 

In order to calculate the MR estimation of LUAD and LUSC 
risk by candidate miRNAs, the beta coefficient and standard 
error of the linear regression of allele score and RPM were 
extracted. Cox semiparametric hazards model was used to 
verify allele score correlation with LUAD and LUSC. 
Patients’ alive/death status in clinical data were used as an 
outcome variable in the model, from the date of diagnosis, the 
date of last follow-up in the surviving patients, and the time of 
death in dead patients, patient's illness time were calculated, 
and were used as the time scale in the model. Inverse-variance 
weighted (IVW) method was used for the summarized data to 
calculate MR estimates of miRNAs for lung cancer. The MR 
analysis was carried out by using the package Mendelian 
Randomization (version 0.3.0) in R (version 3.5.2). 

III. RESULTS 

In this study, SNP is the genetic variant, G; miRNA is 
exposure, P; LUAD and LUSC are the disease states, D; age, 
year of smoking and ethnicity are the confounding factors, U 
(Fig. 3). 

 

Figure 3.  One stage Mendelian Randomization diagram. U: Age, 

Gender, Ethnicity, Cigarettes per day, Years of smoking; G: 

Candidate SNP list; P: Up/down- regulated miRNAs; D: LUAD and 
LUSC; Solid arrows: associations that conform to the MR hypothesis; 

Red cross: association that should not exist. 

Table I shows the distribution of baseline characteristics of 
patients with the two sub-types of lung cancer (LUAD and 
LUSC). The number of patients, average number of age, and 
cigarettes per day were similar in the LUAD and LUSC 
groups. In terms of gender, the ratio of male to female in the 
LUAD group was similar, and the number of males (n = 350) 
in the LUSC group was more than twice than that of female (n 
= 123). For Ethnicity, the Hispanic or Latino population in 
both LUAD and LUSC groups accounted for less than 4% of 
the total, which is a feature with skewed distribution. For years 
of smoking, the average years of smoking in the LUSC group 
(40.71 years) was around 10 years longer than that in the 
LUAD group (30.79 years). 
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TABLE I.  DISTRIBUTION OF BASELINE CHARACTERISTICS IN NSCLC 

Subjects 
Non-Small-Cell Lung Cancer 

LUAD LUSC 

Number of patients 510 473 

Age (Average Years) 65.25 67.39 

Gender (Male / Female) 237 / 273 350 / 123 

Ethnicity  

(Hispanic or Latino / not Hispanic or Latino) 

20 / 490 18 / 455 

Cigarettes Per Day (Average) 2.299 2.874 

Years Smoked (Average) 31.49 40.71 

 

The confounders check was performed by using 76 
candidate SNPs from LUAD group, 238 candidate SNPs from 
LUSC group and clinical data. Linear regression was used for 
continuous features and logistic regression for categorical 
features. Table II and Table III illustrate the relation between 
SNPs (allele score) and confounders in LUAD and LUSC 
receptively. Although the distribution of each subject varies in 
LUAD group and LUSC group, the coefficient value of each 
confounder is close to 0, and P-value of each confounder is 
larger than 0.05, which shows that G, the SNPs are not 
associated with U, the confounding factors.  

TABLE II.  ASSOCIATIONS BETWEEN ALLELE SCORE AND POTENTIAL 

CONFOUNDERS IN LUAD (N = 510) 

Subjects Coefficienta 95%CI P-value 

Age  -0.002 (-0.004 to 0.001) 0.298 

Gender (Male vs Female) 0.012 (-0.052 to 0.075) 0.722 

Ethnicity  

(Hispanic / Latino vs not) 

-0.117 (-0.281 to 0.046) 0.161 

Cigarettes Per Day  0.001 (-0.021 to 0.022) 0.996 

Years Smoked  0.001 (-0.001 to 0.004) 0.267 

a. The coefficient was derived from linear regression for continuous variables and from logistic 

regression for categorical variables. 

TABLE III.  ASSOCIATIONS BETWEEN ALLELE SCORE AND POTENTIAL 

CONFOUNDERS IN LUSC (N = 473) 

Subjects Coefficienta 95%CI P-value 

Age  -0.004 (-0.014 to 0.006) 0.467 

Gender (Male vs Female) -0.042 (-0.237 to 0.153) 0.673 

Ethnicity  

(Hispanic / Latino vs not) 

-0.218 (-0.665 to 0.229) 0.339 

Cigarettes Per Day  0.029 (-0.021 to 0.078) 0.254 

Years Smoked  -0.001 (-0.008 to 0.006) 0.774 

a. The coefficient was derived from linear regression for continuous variables and from logistic 

regression for categorical variables. 

Fig. 4 presents the volcano plots of miRNAs, denoting the 
up- and down-regulated miRNAs in LUAD (left) and LUSC 
(right) groups. Black dots represent the non-regulated 
miRNAs, red dots represent the up-regulated miRNAs, while 
the green dots represent the down-regulated miRNAs. 27 up-
regulated miRNAs and 10 down-regulated miRNAs in LUAD 
group, along with 50 up-regulated miRNAs and 15 down-
regulated miRNAs in LUSC group were marked out. 

 
Figure 4.  Volcano plots of miRNAs in LUAD (left) and LUSC (right). Black 
dots are the non-regulated miRNAs, red dots represent the up-regulated 

miRNAs, and green dots represent the down-regulated miRNAs. Threshold: 

-log10 (P-value) ≥ 1.3 and log2 (Fold Change) ≥ 2. 

The relation between allele score and candidate miRNAs 
in LUAD and LUSC are presented in Table IV and Table V 
respectively, including the results of differential analyses 
(corresponding log2-fold change and P-value), and the results 
of linear regression between allele score and miRNA(P-value 
and adjusted R2 value). Five miRNAs in LUAD were up-
regulated, while in LUSC, hsa-miR-1293 was up-regulated, 
hsa-miR-1-1 and hsa-miR-1-2 were down-regulated. All eight 
miRNAs had P-values less than 0.05, indicating a strong 
correlation between the SNPs (allele score) and the candidate 
miRNA list, which met the assumption in the MR analysis that 
the instrumental variables must be reproducible and strongly 
related to exposure.  

TABLE IV.  CANDIDATE MIRNAS IN LUAD 

MiRNAs Log2FC P-valuea P-valueb Adjusted R2 

hsa-miR-135b 2.779 9.59E-26 0.020 0.009 

hsa-miR-142 2.680 6.04E-35 0.042 0.006 

hsa-miR-182 2.550 3.90E-53 0.010 0.011 

hsa-miR-183 2.356 2.09E-42 0.011 0.011 

hsa-miR-3607 3.759 3.02E-32 0.026 0.008 

a. P-value of differential analyses 

b. P-value of linear regression 

TABLE V.  CANDIDATE MIRNAS IN LUSC 

MiRNAs Log2FC P-valuea P-valueb Adjusted R2 

hsa-miR-1-2 -2.567 1.87E-26 0.013 0.011 

hsa-miR-1293 3.275 8.12E-08 0.018 0.001 

hsa-miR-1-1 -2.511 8.90E-26 0.032 0.008 

a. P-value of differential analyses 

b. P-value of linear regression 

The result of Cox semiparametric hazards model was 
showed in Table VI, which illustrates the association between 
SNPs (allele score) and the survival of two sub-types of lung 
cancer patients. The HR in LUAD group shows that the SNP 
list was not associated with the survival of LUAD, with the 
HR being 1.012, 95% CI from 0.986 to 1.047, per allele score, 
and P-value being 0.397. However, in the LUSC group, the 
SNP list had significant association with the survival of LUSC, 
with the HR being 0.866 per allele score, 95% CI from 0.767 
to 0.977, and P-value being 0.019. Based on the Cox 
semiparametric hazards model, SNP list in LUAD did not 
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show statistically significant association with LUAD, which 
meet the third assumption of MR, that instrument should not 
be directly associated with outcome. The SNPs among the 
SNP list in LUSC group showed a significant relation with the 
survival rate, with an average increase per allele score, the 
survival rate of the patients decreased by 0.866 times. Because 
the LUSC group did not meet the assumption of MR, it could 
not continue to be applied in the subsequent MR analysis. 

TABLE VI.  THE ASSOCIATION BETWEEN ALLELE SCORE AND SURVIVAL 

OF LUNG CANCER 

NSCLC Coefficient HRa 95% CIb P-value 

LUAD 0.011 1.012 (0.986, 1.047) 0.397 

LUSC -0.144 0.866 (0.767, 0.977) 0.019 

a. hazard ratio  

b. 95%CI of HR 

The MR analyses result was summarized in Table VII. The 
relation between SNPs (allele score) effect on LUAD and 
SNPs (allele score) effect on miRNA expression level (RPM) 
were not statistically significant (with p-value = 0.412). The 
RPM level for hsa-miR-135b and hsa-miR-3607 only changed 
around 2 per allele score while the original expression level 
were around 100 in cancer samples. RPM for hsa-miR-142, 
hsa-miR-182 and hsa-miR-183 changing were higher per 
allele score (10.750, 46.150, and 30.020 respectively), while 
the original RPM were from 5000 to more than 30000 in the 
cancer samples. Consequently, there was no clear evidence to 
show the causal association between the five candidate 
miRNAs (hsa-miR-135b, hsa-miR-142, hsa-miR-182 hsa-
miR-183, and hsa-miR-3607) with LUAD. 

TABLE VII.  SUMMARY OF RESULTS FROM MENDELIAN 

RANDOMIZATION ANALYSES 

MiRNA 
Estimate of RPM 

Change 
95% CIa P-value 

hsa-miR-135b 2.604 (-0.882, 3.613) 

0.412 

hsa-miR-142 10.750 (-3.643, 14.92) 

hsa-miR-182 46.150 (-64.040, 156.340) 

hsa-miR-183 30.020 (-4.167, 101.700) 

hsa-miR-3607 -2.801 (-0.949, 3.888) 

a. 95% CI of RPM Change  

IV. DISCUSSION 

In the MR analysis of 510 LUAD patients and 473 LUSC 
patients based on TCGA database, we found that there was no 
obvious evidence of a causal relation between the expression 
of hsa-miR-135b, hsa-miR-142, hsa-miR-182, hsa-miR-183 
and hsa-miR-3607 and the occurrence of LUAD.  

In the LUSC group, the dysregulation results of the three 
miRNAs (hsa-miR-1-1, hsa-miR-1-2, and hsa-miR-1293) 
were found. From the differential expression analysis, hsa-
miR-1-1, hsa-miR-1-2 were down-regulated (with Log2FC = 
-2.511and -2.567, respectively), and hsa-miR-1293 was up-
regulation (with Log2FC = 3.275). These 3 miRNAs were not 
involved in the MR analysis because of not fitting the 
assumptions of MR. According to the HMDD, none of these 
miRNAs were reported to have causal association with LUSC. 

The standard method for determining causal relations is 
randomized controlled perturbation experiments. This way of 
obtaining a causal relation is widely used, however, the 
weakness is that the experiment is complex, and the 
experimental time cost is high and not necessarily definitive 
[27]. Therefore, we adopted a MR approach to examine the 
causal relation between the mentioned miRNAs and the two 
subtypes of lung cancer. 

Our observation of no causal relation between hsa-miR-
135b and hsa-miR-3607 with LUAD occurrence are consistent 
with other studies. However, there are studies from HMDD 
database showing that hsa-miR-142, hsa-miR-182 and hsa-
miR-183 had causal correlation between these three miRNAs 
and non-small-cell lung cancer or lung tumors. Although there 
are many other miRNA-related databases, such as database of 
Differentially Expressed MiRNAs in human Cancers 
(dbDEMC) [28], miRCancer [29], and PhenomiR [30], these 
databases do not provide causal association information, so 
these databases can be used as a reference for correlation 
information (up or down regulation) and biological 
mechanism. 

The criteria of the HMDD database for studies reflecting 
causal associations are as follows: a) the target miRNAs’ 
functional acquisition/loss experiments were included in the 
study; b) the functional experiments should be performed on 
cell lines or diseased animals; c) miRNAs that only enhanced 
efficacy but did not contribute to the diseases were excluded 
[31]. Based on these criteria, there are 53 records indicate that 
hsa-miR-135b, hsa-miR-142, hsa-miR-182, hsa-miR-183, and 
hsa-miR-3607 are associated with lung cancer, including two 
subtypes of NSCLC: LUAD and LUSC. None of the archived 
previous studies reported about hsa-miR-135b and hsa-miR-
3607 reported causal association results.  

On the other hand, hsa-miR-142 was reported to have a 
causal association with NSCLC. MiR-142-3p was positively 
and negatively correlated with the expression of transforming 
growth factor beta receptor 1 (TGFβR1), a tumor suppressor, 
and influence the TGF-1 signal transduction pathway. Up-
regulated hsa-miR-142-3p in NSCLC A549 cells suppressed 
expression of TGFβR1 mRNA and protein, while in the 
knockdown experiment, the zero expression of hsa-miR142-
3p led to a completely opposite result. The expression level of 
TGFβR1 was increased significantly (P-value < 0.01). The 
expression level of the TGFβR1 protein increased or decreased 
in sync with the expression level of TGFβR1 mRNA in stable 
cells. In a downstream analysis, TGF-1-induced 
phosphorylation of SMAD3 (pSMAD3), an indispensable 
downstream effector in canonical TGF-/Smad signaling, was 
attenuated because of the overexpression of hsa-mir-142-3p in 
NSCLC cells A549, but was augmented in the down-regulated 
hsa-miR-142-3p environment. Thus, hsa-miR-142-3p may 
affect the proliferation of NSCLC cells by inhibiting the 
expression of TGFβR1 [32]. More studies should be done to 
further investigate the role of hsa-mir-142 in NSCLC because 
the findings from different studies have been inconsistent. 
Hsa-miR-142 was listed as down-regulated miRNA in HMDD 
in some studies. Another possible function of hsa-miR-142 
was reported to down-regulate the expression of high-mobility 
group box 1 (HMGB1) in NSCLC patients [33]. HMGB1 was 
found to play roles in multiple biological processes, such as 
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DNA and tissue repair, cell mobility and inflammation, which 
was predicted to be the directly target of miR-142 in NSCLC 
cells. 

Out of the 22 records related to hsa-miR-182 in the 
HMDD, one reported potential causal relation with LUAD. 
Programmed cell death 4 (PDCD4), a 64-kDa protein, also 
known as a tumor suppressor inhibiting TPA-induced 
neoplastic transformation and tumor promotion and 
progression, was reported to be the target of hsa-miR-182. 
Methyl thiazolyl tetrazolium and colony formation assays was 
performed, which provided the evidence that down-regulation 
of hsa-miR-182 inhibits cell proliferation in NSCLC cell lines 
A549 and SPC-A-1. Transwell and wound healing assays also 
demonstrated that down-regulation of hsa-miR-182 restricts 
cell invasion and migration ability of A549 and SPC-A-1 cells. 
Up-regulation of hsa-miR-182 may be the cause of the down-
regulation of PDCD4 in lung cancer cells [34]. The mechanism 
of hsa-miR-182 remains to be further studied and confirmed, 
because there are still studies in HMDD and dbDEMC that 
reported that this miRNA was down-regulated in lung cancer 
[35]. 

One out of the 20 records related to hsa-miR-183 reported 
potential causal outcomes with LUAD. Hsa-miR-183 was 
reported as an up-regulated miRNA in this subpopulation in 
both NSCLC cell line and primary tumors. Cells marked by 
CD133+/CD326+ that could represent tumor-initiating cells 
(TICs) or cancer stem-like cells (CSLCs) of the A549 NSCLC 
cell line. Stable hsa-miR-183 overexpressed and knockdown 
CD133+/CD326+ CSLCs were established, which proved that 
the invasion of CD133+/CD326+ CSLCs was promoted with 
overexpressed hsa-miR-183, but reduced in the environment 
with inhibition of hsa-miR-183. Protein tyrosine phosphatase 
non-receptor type 4 (PTPN4), which participates in signal 
transduction, mediates cell growth, differentiation and 
regulates the function of pro-apoptotic cells. PTPN4 was 
reported to be the potential target gene of hsa-miR-183. There 
was a negative correlation between PTPN4mRNA levels and 
hsa-miR-183. Hsa-miR-183 played an invasive role in down-
regulating PTPN4, which can be used as a therapeutic target to 
inhibit the migration ability of cancer stem-like cells in 
NSCLC [36]. 

To our knowledge, this study is the first known study using 
the TCGA data set to investigate the causal relation between 
miRNAs and lung cancer using the MR method, and also one 
of the first MR studies to use miRNA expression as an 
exposure factor, with the SNPs as instrumental variables. In 
recent years, hsa-miR-135b, hsa-miR-142, hsa-miR-182, hsa-
miR-183 have been studied extensively in lung cancer 
research, but the number of hsa-miR-3607 related research is 
still limited. Same in LUSC group, hsa-miR-1-1and hsa-miR-
1-2 were studied a lot, however, role of hsa-miR-1293 in 
LUSC is not clear. Hsa-miR-3607 and hsa-miR-1293 were 
significantly dysregulated in LUAD and LUSC. Therefore, 
this study provides a new direction for the study of miRNAs 
in NSCLC. In recent years, machine learning methods have 
been put forward, which can be used as an alternative to 
statistical methods, including differential expression analysis. 
A decision tree‑based classifiers for lung cancer diagnosis and 
subtyping was reported [41], in which both of hsa‑miR‑135b 
and hsa‑miR‑183 were used as key nodes to separate lung 

cancer samples from normal samples. The miRNAs in the 
results of this study have potential of key nodes or prior 
knowledge in classifiers model building or other models in 
machine learning. 

This study has a few limitations. In the sample of patients 
with LUAD, 86.86% were white people, 11.18% were African 
American, and 1.765% were from Asian, only 0.1961% were 
American Indian or Alaska native. In LUSC group, 87.53% 
were white, 9.937% were African American, and 2.537% were 
from Asian. There was an issue of race disparity in the current 
study, so the result may be more applicable to whites than to 
global universality. The sample capacity also limits the 
universality of the study to a certain extent. This problem can 
be solved by using larger databases or consolidating multiple 
databases, which also provides the ability to extract random 
samples for validation analysis. In the association test between 
SNPs (allele score) and miRNAs (RPM), the correlation 
conclusion could be obtained from the p-value, but it could be 
seen from the F-parameter which represent the strength of the 
instrumental variables were not large. The F-parameter for 
hsa-miR-135b, hsa-miR-142, hsa-miR-182, hsa-miR-183 and 
hsa-miR-3607 were 5.436, 4.152, 6.636, 6.566, and 5.007, 
respectively. Adjusting the way of defying the allele score may 
have the possibility of improving the SNPs’ ability (as 
instrument variable). In this study, all the SNPs emerging were 
treated equally. But in fact, the influence ability of different 
SNPs on disease is different, and the allele frequency varies 
among SNPs. Therefore, meta-analysis that focusing on the 
influence ability and allele frequency of SNPs may be needed. 
The construction of a new allele score computing network, 
which can be weighted according to the influence of SNP and 
allele frequency on the basis of the original score, may enhance 
the utility of SNPs as an instrument variable. 

V. CONCLUSION 

Mendelian randomization analysis indicated that hsa-miR-
135b, hsa-miR-142, hsa-miR-182, hsa-miR-183 and hsa-miR-
3607 were not causally associated with the risk of LUAD. 
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