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Abstract— The prevalence of personal health data from
wearable devices enables new opportunities to understand the
impact of behavioral factors on health. Unlike consumer devices
that are often auxiliary, such as Fitbit and Garmin, wearable
medical devices like continuous glucose monitoring (CGM)
devices and insulin pumps are becoming critical in diabetes
care to minimize the occurrence of adverse glycemic events.
Joint analysis of CGM and insulin pump data can provide
unparalleled insights on how to modify treatment regimen to
improve diabetes management outcomes. In this paper, we em-
ploy a data-driven approach to study the relationship between
key behavioral factors and proximal diabetic management
indicators. Our dataset includes an average of 161 days of time-
matched CGM and insulin pump data from 34 subjects with
Type 1 Diabetes (T1D). By employing hypothesis testing and
association mining, we observe that smaller meals and insulin
doses are associated with better glycemic outcomes compared
to larger meals and insulin doses. Meanwhile, the occurrence of
interrupted sleep is associated with poorer glycemic outcomes.
This paper introduces a method for inferring disrupted sleep
from wearable diabetes-device data and provides a baseline for
future research on sleep quality and diabetes. This work also
provides insights for development of decision-support tools for
improving short- and long-term outcomes in diabetes care.

I. INTRODUCTION

Diabetes is a prevalent chronic condition that affects up
to 30.3 million Americans and is ranked as the 7-th leading
cause of death in the U.S. [1], [2]. It is characterized by
impaired glucose metabolism yielding frequent high and low
blood glucose (BG) levels that increase the risk of macro-
and micro-vascular complications [3]. Proper management of
diabetes requires meticulous consideration of various factors
that can affect BG levels, which include food, medication,
activity, sleep, and other biological, environmental and be-
havioral factors [4], [5]. Hence, it is well established that
behaviors and decisions in daily living directly affect both
proximal and distal outcomes in diabetes care.

The American Diabetes Association recommends assess-
ment of sleep patterns as part of a comprehensive medical
evaluation [2] due to emerging evidence on the relationship
between sleep patterns and diabetes. Majority of studies in
the literature have focused on associations between sleep
and Type 2 Diabetes (T2D) management, while only a few
have investigated the role of sleep in T1D management [6]–
[8]. However, recent reviews found that people with T1D
experience a higher rate of sleep disturbance and poorer sleep
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quality than people without diabetes [8], [9]. In this paper,
we introduce a novel approach for inferring sleep disturbance
and assess the effect of interrupted sleep on glycemic control.

Additionally, several research studies have investigated
the effect of different eating patterns on T2D management.
However, only a few studies have investigated the effect of
eating patterns in T1D management [10]–[12], particularly
the effect of meal size on glycemic control [13]. For instance,
one study contrasted the effect of low and high carbohydrate
(CHO) intake on glycemic variables in 10 subjects with T1D
[11]. The authors found that low carbohydrate diets (i.e. <
47g) resulted in more time with glucose values in the healthy
range (i.e. 70 - 180 mg/dL) and less glycemic variability.
This evidence supports the notion that low carbohydrate
diets, defined by the total carbohydrate intake per day, is
advantageous for T1D management. However, there is no
knowledge on the effect of individual meal sizes on glycemic
control. This paper extends prior work by investigating
the effect of individual meal size on diabetes management
indicators and the association between the meal size and
different management outcomes.

To achieve better glycemic control for T1D management,
research supports that insulin administration via pump ther-
apy is more effective than multiple dose insulin injections
for persons with T1D [14]. In addition, recent research shed
light on adjusting insulin doses according to dietary fat
and protein intake to achieve better glycemic management
[15]. However, the process of determining the insulin dosage
(basal and bolus) is still a matter of trial and error. Lower
CHO diets should necessitate lower mealtime insulin needs
and potentially contribute to more stable blood glucose
[11], [12]. However, there is little knowledge on the effect
of different insulin dosage amounts on proximal glycemic
control. This research extends prior work by investigating
the effect and associations of different bolus insulin doses
with glycemic control.

In this study, we take a data-driven approach to elucidate
the factors associated with different management outcomes
in diabetes care as shown in Fig. 1. Using a multivariate
dataset from 34 subjects with T1D who use continuous
glucose monitoring (CGMs) and insulin pumps for daily self-
management, we studied the effect of behavioral factors (i.e.
sleep interruption, meal size and insulin dosage) on proximal
diabetes outcomes such as time in target range, number of
glycemic events, glycemic variability.
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Fig. 1. Research overview outlining the association between behavioral
factors and key diabetes management indicators.

II. DATA DESCRIPTION

All the data used in this study was contributed to the
Digital SMD project by members of an online diabetes
community [16]. Table I shows a summary of our dataset
which contains time-matched CGM and insulin pump data
from 34 subjects with T1D (mean age = 39.79 ± 8.73
yrs., mean time since diagnosis = 18.44 ± 10.58 yrs.). The
dataset includes 100 - 270 days of data from each subject,
totaling 1,513,398 BG readings, 37,742 bolus insulin doses,
and 21,519 entries of carbohydrate inputs. Important data
streams used in this work are BG readings from CGMs, self-
reported carbohydrate estimates (known as carb input), and
bolus insulin dose amounts from insulin pumps. Our dataset
does not include gender of subjects, protein and fat intake,
and other activities of daily living such as exercise, therefore
no analysis was done in this regard.

TABLE I
DATA DESCRIPTION - AN OVERVIEW OF SUBJECTS, CGM DATA AND

INSULIN PUMP DATA USED IN THIS STUDY.

Attribute Mean (± SD) Range

Su
bj

ec
t

Total Subjects 34 -

Age 39.8 (±8.73) yrs. 24− 52 yrs.

Years of Diagnosis 18.4 (±10.58) yrs. 2− 48 yrs.

No. of Qualified Days 161.2 (±40.69) days 100− 270 days

C
G

M Total BG Samples 1, 513, 398 -

Samples / Subject 44, 511 24, 523− 80, 259

In
su

lin
Pu

m
p

Total Bolus Doses 37, 742 -

Bolus Doses / Subject 1, 110.1 306− 2, 129

Total Carb-Inputs 21, 519 -

Carb-Inputs / Subject 632.9 144− 1, 039

III. METHOD

To investigate the effect of key behavioral factors on
diabetes management, we employed two methods for anal-
ysis, namely, hypothesis testing [17], and association rule
mining [18]. The purpose of hypothesis testing was to
learn from the data whether statistical differences exist in

Fig. 2. Top left, top right and bottom: histograms illustrating distributions
of BG, CHO intake and bolus dosage respectively.

diabetes management with respect to different categories
of behavioral factors. For example, is there a statistically
significant difference in proximal diabetes management in-
dicators between eating small meals vs. large meals or
continuous sleep vs. interrupted sleep? If a difference was
found (using two-sample t-test), we then tested the direction
of the difference (using one-sample t-test), e.g. are large
meals significantly associated with higher or lower glycemic
variability in comparison to small meals? In addition, we em-
ployed frequent itemset mining to learn associations between
behavioral factors and diabetes management outcomes. The
following subsections provide more details on the methods
used for hypothesis testing and association mining, as well
as the parameters used for quantifying diabetes management
and behavioral factors.

A. Hypothesis Testing

1) Two-sample t-test: A two-sample t-test evaluates
whether there is enough evidence from a population dataset
to support the null hypothesis, H0 : u1 = u2 or reject
the null hypothesis in favor of an alternative hypothesis,
Ha : u1 6= u2; where u1 and u2 represent the mean of
the two samples. In this study, the two-sample t-test was
used to assess the null hypothesis that there is no difference
between the mean of diabetes management indicators for two
independent categories of behavioral factors.

2) One-sample t-test: A one-sample t-test evaluates
whether there is enough evidence from a population data
to support the null hypothesis, H0 : u1 = u2 or reject
the null hypothesis in favor of an alternative hypothesis,
Ha : u1 > u2 or Ha : u1 < u2; where u1 and u2 represent
the mean of two samples. In this study, the one-sample t-
test was used to assess the direction of a difference between
mean of diabetes management indicators for two independent
categories of behavioral factors.

Fig. 2 shows the general distribution of BG values, carb
inputs, and bolus insulin doses in our dataset. While all of
the three quantities display some degree of skewness, based
on the Central Limit Theorem, these distributions are normal
and thus fitting for analysis with two- and one-sample t-tests.
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Fig. 3. Sample blood glucose measurements and carbohydrate inputs over
the course of a day.

B. Association Mining

Unlike statistical methods for hypothesis testing, data min-
ing aims “to find unsuspected relationships and to summarize
the data in novel ways that are both understandable and
useful” [19]. Therefore, we employed association mining
to quantify the relationships between diabetes management
indicators and different behaviors. This is assessed using
metrics of support, which describes the co-occurrence of two
events, A and B, in a dataset (e.g. non-interrupted sleep and
lower glycemic variability), confidence, which describes the
probability that event B occurred given event A, and lift,
which describes the dependence and/or correlation between
events A and B. When lift is greater than 1, then A and B
are positively correlated and the occurrence of one implies
the occurrence of the other. Per [18], the formulas for each
metric is as follows:

support(A⇒ B) = P (A ∪B)

confidence(A⇒ B) = P (B|A)

lift(A,B) =
P (A ∩B)

P (A)P (B)

(1)

C. Diabetes Management Indicators

These indicators were purposefully chosen from clinical
references [20] to encompass important aspects of glycemic
control, including percentage of blood glucose values in the
target range and measures of glycemic variability. In this
paper, we selected three important indicators (time in target
range, number of glycemic events, and glycemic variability)
to quantify proximal diabetes management within a given
time window [t, t+ w]:

1) Time in Target Range: This metric describes the per-
centage of blood glucose values within the healthy (or tar-
get) range [70, 180mg/dL] and is recommended in various
consensus reports for quantifying diabetes management [20],
[21]. The target goal for persons with T1D is to maintain
blood glucose values within the healthy range for ≥ 70% of
the time [22]. Therefore, in this work a threshold of 70% was
used to demarcate good vs. suboptimal glycemic control.

2) Number of Glycemic Events: This metric refers to the
total count of low (< 70mg/dL) and high (> 180mg/dL)
blood glucose events. According to Danne et al. [20], a
low blood glucose event is defined when CGM readings
are below the threshold for at least 15-mins while a high
blood glucose event is defined when CGM readings are
above the threshold for at least 15-mins. A primary objective
in diabetes management is to minimize the occurrence of
glycemic events. As recommended in prior work [23], a
settling time of 30-mins was used so that no more than one
glycemic event was recorded within a 30-mins duration. In
this work, one glycemic “event” is defined by the crossing of
blood glucose values into the high/low region and subsequent
crossing of blood glucose values into the normal region.

3) Glycemic Variability: This metric describes blood glu-
cose fluctuations and is an accepted “clinically valuable
marker” for assessing diabetes management [20]. Increased
glycemic variability is correlated with poor glycemic control
and associated with long-term diabetes complications. Per
clinical literature, standard deviation is widely-used and is
an accepted metric for quantifying glycemic variability [20],
[24]. So, the standard deviation was used in this work and
calculated using all BG values with the given time window.

D. Quantifying Behavioral Factors

As shown in Fig. 1, three behavioral factors were identified
and evaluated to assess potential associations with different
diabetes management outcomes. These factors include: sleep
interruption, meal size, and insulin dose. Each of these fac-
tors were quantified and/or estimated using subject’s CGM
and insulin pump data (see Fig. 3 for example). Specifics on
how each behavioral factor was calculated is below.

1) Sleep Interruption: In this work, we introduce a set
of proxies for inferring sleep interruptions using wearable
diabetes-device data. To the best of our knowledge, this
is a novel contribution, which will enable further research
on the effects of nocturnal sleep in diabetes management.
Although CGM and insulin pump data does not explicitly
include records of sleep, a combination of three proxies are
useful for identifying sleep interruption:

sn =

{
interrupted : cn > 0 ‖ bn > 0 ‖ ↑ BG
continuous : otherwise

(2)

where sn represents the n-th night sleep between the hours
of [12AM, 6AM], cn represents the total night-time carb-
input, bn represents night-time bolus insulin dose, ↑ BG
represents a sharp increase in blood glucose values, and ‖ is
the mathematical symbol for a logical “or” operator. The
intuition behind equation 2 is that a carb-input (or meal
entry) is indicative of a person being awake. Similarly, a
high blood glucose event calls for a correction dose of bolus
insulin (with no carb-input), therefore, indicative of a person
being awake. Lastly, food intake with a missed insulin dose
is also indicative of a person being awake and this will often
lead to a sharp increase in blood glucose values. DeSalvo
et al. recommend a rate of change of > 4mg/dL to detect
missed meal boluses with relatively low false alarm rate [25].
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In the event that any of these three activities occur during the
night-hours of [12AM, 6AM], it implies that the user has had
their sleep interrupted. It is important to note that this is a
proxy and there are a few cases in which the assumption will
fail (e.g. night awakening with no diabetes-related regimen
and for persons with diabetes caregivers - such as young
children with parents who wake up to administer nighttime
bolus insulin, when needed). However, as shown in Table I,
the minimum age of subjects in this study is 24 yrs., therefore
our dataset does not include young children.

In this study, we assessed the effect of sleep interruption
on next-day diabetes management between [6AM, 12AM].
This goal was informed by related references which sug-
gests that “not getting enough sleep leads to higher blood
sugar [glucose]” in the daytime hours [4]. Building on this,
diabetes management indicators were calculated to quantify
the next-day glycemic control following nights marked with
interrupted vs. continuous sleep. Based on equation 2, our
dataset includes a total of 2382 nights with interrupted sleep,
and 2787 nights with continuous sleep.

2) Meal Size: To calculate the appropriate amount of
bolus insulin needed to compensate for an expected increase
in BG stemming from consumption of food/beverages, in-
sulin pump users need to “announce meals” by estimating
the food content [26]–[28]. Given this, insulin pump data
includes self-reported estimates of meal sizes. In this work,
we aimed to evaluate the effect of various meal sizes on
diabetes management.

To this end, the first step was to determine a time window
around each carb-input on which to calculate diabetes man-
agement indicators. This required two considerations: 1) the
duration of insulin action which indicates the time in which
a dose of insulin will be active in the body [27], 2) the
time difference between two adjacent meal entries (or carb-
inputs). Given that food/beverage intake is often associated
with a bolus insulin dose, the objective is to quantify the
effect of these choices on glucose control by calculating
diabetes management indicators for the related time window
associated with each carb-input. According to Walsh et al.,
the best time estimate for duration of insulin action in the
body is 5 - 6 hrs for most insulin doses [27]. Therefore,
a time window of 5.5 hrs was chosen for calculating dia-
betes management indicators around every carb-input. This
included 1-hr before the carb-input timestamp to account for
the potential of late entries and 4.5 hours after the carb-input
timestamp.

Informed by prior literature [27], two time thresholds
were set to handle adjacent entries within the selected 5.5
hr window: 1) combine time - this was set to 0.5 hrs and
allowed for combining adjacent carb-input entries less than
0.5 hrs apart given that majority (≥ 90%) of the insulin
dose is not yet active, 2) maximum time - this was set to
4.5 hrs and allowed for disregarding the former of adjacent
carb-input entries with a timestamp difference greater than
the time in which they could be combined but less than
4.5 hours. Scenarios with adjacent carb-input entries outside
of the above-stated constraints were disregarded completely.

Following this, all carb-input entries were split into three
categories to assess management outcomes related to each:

ci =


small : µc − 2σc ≤ ci < µc − 1σc

medium : µc − 1σc ≤ ci≤ µc + 1σc

large : ci > µc + 1σc

(3)

where ci represents the i-th carb-input, µc represents the
mean of carb-inputs across all subjects and days, and σc
represents the standard deviation of carb-inputs across all
subjects and days. The construction of above criteria comes
from the Chebyshev’s inequality, which ensures at least 1−
1
k2 values are within k standard deviations of the mean.

3) Insulin Dose [Bolus]: Similar to the considerations
taken into account for meal size described above, a time
window of 5.5 hrs was chosen for calculating diabetes man-
agement indicators immediately following each bolus insulin
dose. Additionally, all bolus insulin doses were split into
three categories to quantify diabetes management outcomes
related to each:

bi =


small : bi < µb − 0.75σb

large : bi > µb + 0.75σb

medium : otherwise

(4)

where bi presents the i-th bolus insulin dose in the dataset
from insulin pump, µb represents the mean of all bolus
insulin doses across subjects and days, and σb represents the
standard deviation of bolus insulin doses across all subjects
and days.

IV. RESULTS

1) Hypothesis Testing Results: Table II shows a summary
of the results from hypothesis testing. Given that a one-
sample t-test provides more information (i.e. direction) than
the two-sample t-test and there were no conflicts in the re-
sults, we show the one-sample t-test results. Statistical testing
was done using three levels of alpha i.e., α = 0.001, 0.01
and 0.05, marked as “***”, “**” and “*”, respectively, for p
less than α; else p > 0.05 and was marked as “x” for “not
significant”.

Our results show that behavioral choices related to meal
size and insulin dose (i.e. small, medium, and large) have
significantly different effects on diabetes management, es-
pecially as it relates to glycemic variability, and time in
target range. This result supports to reject the null hypothesis
that the effect of these choices on diabetes management is
the same. For example, in the comparison of large meals
vs. small meals, large meals were associated with more
suboptimal outcomes, like the higher glycemic variability
(p < 0.001), and more glycemic events (p < 0.001), while
small meals were associated with more positive outcomes,
such as higher time in target range (p < 0.001). The same
effect was found in the comparison between large insulin
doses vs. small insulin doses. However, interrupted sleep
showed to be only associated with the number of glycemic
events as opposed to glycemic variability and time in target
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TABLE II
ONE-SAMPLE T-TEST RESULTS: BEHAVIORAL FACTORS VS. DIABETES

MANAGEMENT INDICATORS

Behavioral Factor Test Group Time in Target Range No. of Glycemic Events Glycemic Variability

Meal Size

Large Meal vs.
Small Meal

∗ ∗ ∗, p < 0.001
(Small > Large)

∗ ∗ ∗, p < 0.001
(Large > Small

∗ ∗ ∗, p < 0.001
(Large > Small)

Large Meal vs.
Medium Meal

∗ ∗ ∗, p < 0.001
(Medium > Large)

×, p = 0.334
(Failed to Reject Null)

∗ ∗ ∗, p < 0.001
(Large > Medium)

Medium Meal vs.
Small Meal

∗ ∗ ∗, p < 0.001
(Small > Medium)

∗ ∗ ∗, p < 0.001
(Medium > Small)

∗ ∗ ∗, p < 0.001
(Medium > Small)

Insulin Dose

Large Dose vs.
Small Dose

∗ ∗ ∗, p < 0.001
(Small > Large)

∗ ∗ ∗, p < 0.001
(Large > Small)

∗ ∗ ∗, p < 0.001
(Large > Small)

Large Dose vs.
Medium Dose

∗ ∗ ∗, p < 0.001
(Medium > Large)

∗ ∗ ∗, p < 0.001
(Large > Medium)

∗ ∗ ∗, p < 0.001
(Large > Medium)

Medium Dose vs.
Small Dose

∗ ∗ ∗, p < 0.001
(Small > Medium)

∗, p = 0.013
(Medium > Small)

∗ ∗ ∗, p < 0.001
(Medium > Small)

Sleep
Interruption

Interrupted Sleep vs.
Continuous Sleep

×, p = 0.27
(Failed to Reject Null)

∗ ∗ ∗, p < 0.001
(Interrupted >
Continuous)

×, p = 0.17
(Failed to Reject Null)

Key ∗ ∗ ∗, ∗∗, ∗ = Significant at α = 0.001, 0.01, 0.05, respectively × = Not Significant

range. More specifically, interrupted sleep was associated
with a greater number of glycemic events (p < 0.001) than
continuous (or non-interrupted sleep).

2) Association Mining Results: Results in this section
provide concrete probabilities on the relationship between
two events as learned from our dataset. Metrics for evaluating
associations include support, confidence, and lift as shown
in equation 1. These were calculated for all three behav-
ioral factors in relation to two recommended T1D targets
identified in the literature. Firstly, a recent consensus report
on clinical targets for CGM data recommends a goal of
≥ 70% Time in Target Range for persons with T1D [22].
Hence, we evaluated the association between categories of
each behavioral factors and ≥ 70% Time in Target Range.
Secondly, experts recommend a goal of < 33 - 36% for
coefficient of variation (%) defined as [standard deviation of
glucose/mean glucose] × 100 [29]. This equates to a target of
< 50 - 55 mg/dL in standard deviation based on the goal of
maintaining a mean blood glucose < 154 mg/dL for persons
with T1D [2]. In this work, we evaluated the association
between categories of behavioral factors yielding a standard
deviation of < 50 mg/dL.

Table III shows a summary of all results from association
mining. Our result shows a 59% confidence for association
between small meals and the recommended target goals of ≥
70% Time in Target. Meanwhile, there is a lower confidence
of 47.81% for the association between large meals and
the recommended target goals of ≥ 70% Time in Target.
Therefore, based on our dataset, small meals are 11.19%
more probable to yield the recommended goal for Time in
Target Range than large meals. It is important to note that
small meals ⇒ ≥ 70% Time in Target Range has a lift
of > 1 meanwhile large meals ⇒ ≥ 70% Time in Target
Range has a lift of < 1. This means that the occurrence

TABLE III
ASSOCIATION MINING RESULTS:

BEHAVIORAL FACTORS⇒ RECOMMENDED T1D TARGET

Association Rule Count Support Confidence ∆ Confidence Lift

Meal Size

Small Meals ⇒
> 70% Time in Target Range 390 4.17% 59.00% - 1.08

Large Meals ⇒
> 70% Time in Target Range 1, 024 10.95% 47.81% 11.19% 0.88

Small Meals ⇒
Glycemic Variability < 50mg/dL 589 6.30% 89.11% - 1.09

Large Meals ⇒
Glycemic Variability < 50mg/dL 1, 640 17.54% 76.56% 12.55% 0.94

Insulin
Dose

Small Bolus Dose ⇒
> 70% Time in Target Range 124 3.60% 76.54% - 1.29

Large Bolus Dose ⇒
> 70% Time in Target Range 659 19.15% 51.12% 25.42% 0.86

Small Bolus Dose ⇒
Glycemic Variability < 50mg/dL 158 4.59% 97.53% - 1.12

Large Bolus Dose ⇒
Glycemic Variability < 50mg/dL 1, 058 30.75% 82.08% 15.45% 0.94

Sleep
Interruption

Continuous Sleep ⇒
> 70% Time in Target Range 1, 488 28.79% 53.39% - 1.00

Interrupted Sleep ⇒
> 70% Time in Target Range 1, 274 24.65% 53.48% −0.09% 1.00

Continuous Sleep ⇒
Glycemic Variability < 50mg/dL 1, 787 34.57% 64.12% - 1.01

Interrupted Sleep ⇒
Glycemic Variability < 50mg/dL 1, 507 29.16% 63.27% 0.85% 0.99

of small meals and ≥ 70% Time in Target Range appear
more than the baseline probability (i.e. positively correlated),
meanwhile the occurrence of large meals and ≥ 70% Time
in Target Range occur less than the baseline probability
(i.e. negative effect). Similar results were found between
small meals and glycemic variability, where small meals ⇒
glycemic variability < 50 mg/dL was 12.55% more probable
than large meals ⇒ glycemic variability. The association
between small bolus insulin doses and target time in range
and glycemic variability was even higher with a greater
confidence of 25.42% and 15.45%, respectively, compared
to the association between large insulin doses and target
time in range and glycemic variability. These findings are
in agreement with the results from hypothesis testing which
supports that there is a significant difference between the
effects of meal size on diabetes management indicators -
particularly time in target range and glycemic variability.

Conversely, results from this study show approximately no
difference for sleep interruption on the recommended goals
of ≥ 70% Time in Target Range and glycemic variability
of < 50 mg/dL. These findings align in the majority with
the results from hypothesis testing which supports to reject
the null hypothesis that interrupted sleep (vs. not) show no
statistical differences for the indicators of Time in Target
Range and Glycemic Variability. However, as seen in the
earlier results, the effects of sleep interruption only showed
significant differences in relationship to number of glycemic
events. However, there is no known recommended target
for the number of glycemic events in diabetes management
indicators other than to minimize the occurrence of glycemic
events. Hence, no analysis was done for this factor.
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V. CONCLUSION

The advent of wearable devices, especially for manage-
ment of chronic conditions, provide unparalleled opportuni-
ties to understand the relationships between behavioral and
health outcomes. Unlike randomized control trials which are
expensive and subjective self-report questionnaires which
are erroneous, knowledge discovery from personal health
data is relatively under-utilized in the literature. However,
this approach has the potential to identify valid, actionable
and interpretable information that can guide manual and
automated treatment strategies. Following this work, future
research will investigate the potential benefit of adding be-
havioral insights in predictive models for detecting of adverse
glycemic events in diabetes management. Further research
will also validate the associations between interrupted sleep
and diabetes management using wearable activity trackers.
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