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Abstract

This master thesis project proposes methods for individualizing closed-loop con-
trolled anesthesia. One of the largest challenges with closed-loop anesthesia is the
variation between patients in the sensitivity to the anesthetic drug, here propofol.
Due to limited excitation in the process dynamics together with a high measurement
noise level is it not possible to determine a full reliable model describing a patient’s
dynamics online. The method used here for minimizing the effects of inter-patient
variability was through patient model partitioning of children and adult models.
Partitioning was based on similarity measures between patients, for example age,
weight and applied to a dynamic model describing each patient. For each subset
resulting from partitioning, an optimal PID controller has been synthesized. This
thesis has shown that the effects of inter-patient variability can be reduced using
partitioning into two subsets. More subsets did not result in a significant reduction.
Partitioning based on v-gap between patient models resulted in the best attenua-
tion of surgical stimulation disturbances. Partitioning based on age for children and
weight for adults reduces the impact from surgical stimulation were proposed for
clinical practices. These methods are easy to implement because the demograph-
ics are known beforehand and does not depend on actual measurements during the
anesthesia. The results are substantiated by simulations and calculations of achieved
attenuation with acceptable performance and preserved robustness.
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1

Introduction

1.1 Closed-loop controlled anesthesia

Anesthesia is a state of controlled unconsciousness. It is used during surgeries and
in intensive care units when the procedure would be too painful or otherwise in-
appropriate for the patient to be awake. Anesthesia reduces the sensing abilities so
that the patient cannot feel pain or touch and will not remember the surgery after-
wards. During surgery, it is important to keep the patient unconscious through the
entire surgery. The anesthesia itself is not without risk due to possible over- and
underdosing of anesthetic drugs, even if severe complications are rare.

Traditionally, the drug dosing is manually controlled by the anesthesiologist.
The anesthesiologist estimates the anesthetic state and adjusts the drug dosage ac-
cordingly. The anesthetic state is estimated by looking at the patients movements,
breathing and hemodynamics, for example heart rate. A correct drug dosage is of
importance because under-dosing may lead to awareness and over-dosing may lead
to longer emergence phase, possible side effects such as nausea or adverse hemody-
namic response. Deep anesthesia may also lead to apnea if the procedure requires
access to the airways so that the patient can not be put on respirator.

In this thesis, closed-loop control of anesthesia is considered. Closed-loop con-
trol means that the drug dosing is based on feedback from a measurement-based
estimate of the anesthetic state. A schematic view of closed-loop controlled anes-
thesia is shown in Figure 1.1. The electroencephalogram (EEG) of the patient is
continuously measured and depending on the EEG, a digital controller calculates
an appropriate drug infusion rate for the infusion pump to give the patient.

This methodology was introduced in the 1950s by a group lead by Bickford.
One study where the EEG was analyzed for abdominal surgery is [Mayo et al.,
1950]. Since then, there has been research involving clinical evaluation of closed-
loop controlled anesthesia [van Heusden et al., 2014], [Liu et al., 2011] and [Struys
etal., 2001].

One of the largest challenges with closed-loop anesthesia is the inter-patient
variability, meaning that patients react differently to infusions of anesthetic drugs.
This depends for example on variation in the metabolism between patients [van
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Chapter 1. Introduction
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Figure 1.1: A schematic overview of closed-loop anesthesia where the depth of con-
sciousness is measured with EEG and the drug dose determined by the controller.

Heusden et al., 2013]. This problem was looked into in [Soltesz et al., 2016], from
where this thesis has its starting point.

1.2 Problem formulation

The main problem and purpose of this thesis was to minimize the effects of the
inter-patient variability of patients for safe and adequate anesthesia. Closed-loop
controlled anesthesia can reduce the effects of the inter-patient variability by re-
ducing possible under- and over-dosing. If the inter-patient variability is not taken
into account, closed-loop control may show undesirable oscillatory behaviour or
result in an overshoot during induction of anesthesia. When tuning the controller
parameters, one must also take into account that induction needs to be fast enough
to not slow down the surgical procedure. This thesis proposes a method to mini-
mize the effects of inter-patient variability through patient model partitioning. It is
wanted that the partition functions so that patients with similar dynamics belong to
the same subset. A controller was then synthesized for each subset.

A patient’s response to a drug infusion is unknown before the anesthesia. Due
to this, a conservative controller is normally chosen to make sure that even a sensi-
tive patient was safely anesthetized. During anesthesia it is possible to estimate the
actual dynamics of a patient, using the drug infusion profile and associated EEG-
based hypnotic depth measure. It is preferable to identify the dynamics during the
first phase of anesthesia (called induction, described further in Section 1.3) when
the (surgical) disturbance level is relatively low and where there is a control signal
that excites the process dynamics. Due to limited excitation it is generally not possi-
ble to obtain a full model describing the patients dynamics from the induction phase
data. If it would be possible, an individual controller could be chosen to maximize
performance and robustness for this patient.

In this thesis, we make use of a set of patient models that were previously identi-
fied from clinical data in [van Heusden et al., 2013] and [van Heusden et al., 2017].
These models are described in detail in Chapter 2. A robust, but conservative, con-
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1.3 Anesthesia

troller has earlier been designed for the patients in [van Heusden et al., 2014] for
the children model set and in [Dumont et al., 2011] for the adult model set.
Through partitioning of the the patient model set into subsets with mutually
similar dynamics, a controller was synthesized for each subset. Controllers was
synthesized with constraints so that the resulting controllers have at least the same
performance and maintained robustness compared to a nominal controller originally
designed for the children model set. Several questions need to be addressed:

* Which metric should be used to describe similarity between patients?
* How should partitioning be performed?

 If we perform partitioning depending on induction phase data, how can we
design a robust classifier which can be used online after the induction phase
for a given patient?

1.3 Anesthesia

Anesthesia is a state of unconsciousness, coming from the Greek word
availocOnoio, "anaisthésis”, meaning "without sensation". It involves not only a
state of controlled unconsciousness, but also lack of pain reception, loss of recall
(amnesia) and muscle relaxation [Bibian et al., 2005].

Thus, anesthesia can be divided into three components: hypnosis, analgesia
and neuromuscular blockade. The main part is hypnosis, meaning temporary drug-
induced loss of consciousness and memory. A temporary loss of memory is par-
ticularly important if a patient is awakening and feels pain during surgery [Ranta
et al., 1998]. This is rare and highly undesirable. Hypnosis is commonly achieved
with intravenous infusions of the drug propofol. This thesis considers control of the
hypnotic state using propofol.

The second component is analgesia. Analgesic drugs affect the nervous system,
giving the patient sensation loss, relieving pain in the beginning, during and after
the surgery. An analgesic drug is often co-administered together with a hypnotic
drug. In the clinical trials [van Heusden et al., 2013] and [van Heusden et al., 2017]
from where this thesis has received its data, the opioid named remifentanil is used
together with propofol. The third component is neuromuscular blockade which is a
state of muscle relaxation and is not considered in this thesis.

A typical anesthetic episode can be divided into three phases. The first phase
is the induction phase where the patient is brought to unconsciousness. Normally,
particularly for children, a bolus (large drug dose over short time) is given to induce
anesthesia. The induction phase is normally a few minutes long. It is desirable with
a short induction time to minimize patient discomfort and to be resource efficient.
The drugs increase the depth of hypnosis (DOH) [Zikov et al., 2006] to a desired and
stable level, which is controlled throughout the maintenance phase. Surgery takes
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Chapter 1. Introduction

place during this phase. Surgical stimuli reduce the depth of hypnosis so that the
patient becomes more conscious and can be viewed as output disturbances [Bibian
et al., 2005]. The final phase is the emergence phase where the drug infusions are
terminated and the patient wakes up. A long emergence phase may lead to nausea
and other side effects. The DOH varies during the surgery, in particularly when there
is a surgical disturbance. The disturbance is immeasurable and must be counteracted
by the anesthesiologist.

The level of consciousness is denoted DOH, depth of hypnosis. It can be esti-
mated using the electroencephalogram, EEG. The EEG is analyzed to yield a level
of consciousness measure. One commonly used DOH index is the bispectral index,
BIS. BIS is based on bispectral analysis which divides the EEG data into epochs
and computes the Fourier transform of each epoch, as further explained in [Sigl and
Chamoun, 1994]. The BIS is reported on a scale between 100 and O where 90 — 100
represents full wakefulness and O represents an iso-electric EEG. Another index that
makes use of the same scale is WAV s, derived from wavelet coefficients in the
EEG signals [Sadati et al., 2018]. The WAV cns index is provided by the NeuroSense
NS-701 monitor (NeuroWave Systems Inc., Cleveland Heights, OH) [Zikov et al.,
2006]. This index is used in this thesis and will be referred to as depth of hypnosis
or DOH. A value between 40 and 60 is considered appropriate for many surgical
procedures.

12



2

Patient models

To be able to develop and evaluate better controllers for automation in anesthesia,
models derived from clinical data are used. These models describe how a patient
responds to a drug and was be used for controller design. One important thing to
keep in consideration is that patients that were difficult to model are not part of the
patient model set and therefore not part of this study.

2.1 PKPD model structure

A patient can be modeled with a pharmacokinetic (PK) and a pharmacodynamic
(PD) model. The model structure can be seen in Figure 2.1. Together, they describe
how the drug infusion rate u(t) relates to the clinical effect E (), which is measured
by the EEG monitor. The PK model describes how the body takes up, distributes
and eliminates the drug, or how the drug infusion rate relates to the plasma concen-
tration Cp(¢). The PD model describes how the plasma concentration is related to
the clinical effect. When combined, these are referred to as a PKPD model.

The PK part of the model is derived from a population average model in litera-
ture. The PD model consists of two parts: a linear first-order transfer function with
a time delay together with a nonlinearity. The first part relates the plasma concen-
tration, C,(¢), and the concentration at the effect site (i.e., the brain), C.(¢), and can

Hill function [———

=1 PK

Figure 2.1: A PKPD model structure describing relationship between drug infusion
rate and clinical effect. The PD model consists of two parts, a linear first-order
transfer function with delay and a nonlinear Hill function.
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Chapter 2. Patient models

be described as,
k
G = — ¢ las 2.1
..y (5) TR (2.1)
where the gain k and delay 7; are identified from data. The nonlinearity is the Hill
function, parameterized as in [van Heusden et al., 2013], relating C,(¢) and the
clinical effect E(r) (measured in WAV cns units)

(1)
ECh,+Cll0)
where ECs is 50 % clinical of the maximal clinical effect and v is the "Hill pa-
rameter". Ey is the clinical effect in absence of a drug, scaled as 100 > Ey > 0. A

detailed explanation of how the parameters can be identified from data is given in
[Bibian et al., 2006] and [van Heusden et al., 2013].

E(t)=Ey—Ey (2.2)

2.2 Patient models from clinical data

Models for both children and adults are used in this thesis. They were initially pub-
lished in [van Heusden et al., 2013] and [van Heusden et al., 2017], respectively.
The clinical data from where the models are derived comes from both manually
administered and closed-loop controlled anesthesia. Originally the models are non-
linear (see (2.2)) but they are linearized around the operating point corresponding
to 50 WAV ns and discretized for design.

The models are represented as discrete time LTI state space systems. There are
47 children models from [van Heusden et al., 2013] and 31 adult models from [van
Heusden et al., 2017]. In addition to the PKPD models, information about age,
gender, body weight and body height is available for each modeled patient, see Table
2.1. Other information available with the models is the clinical effect in absence of
a drug, Ey. Estimation of Ej has earlier been made from the first 50 seconds of
induction data. The adult models also contain information about LBM, lean body
mass.

For adults the use of body mass may lead to overdosing for obese patients,
therefore another weight indicator is used, LBM. LBM is a measure of difference
between total body weight and body fat. Normally, it averages between 60 % and
90 % of total body weight [Hume, 1966]. An estimation of a LBM can be computed
from height and weight. The following definition from [Hume, 1966] of LBM is
used

Male:

LBM = 0.32810bwt + 0.33929bht — 29.5336
Female:

LBM = 0.29569bwt + 0.41813bht — 43.2933,

where bwt is weight in kg, and bht the height in cm.

14



2.3 Delay

Table 2.1: Demographic data for the models sets, value(range). LBM denotes lean
body mass with definition from [Hume, 1966].

Children, n =47 Adults, n =31

Age (yr) 12 (6 - 16) 61 (38 - 82)
Gender (F/M) 26 F, 19 M 13F, 18 M
Height (cm) 155.4 (119-181) 173 (155 - 190)
Weight (kg) 47.3 (21 - 82) 84 (47 - 118)
Ey 91.4 (87 -95) 91.6 (87.8 - 94.0)
LBM (kg, only adults) - 55.8 (38.3 - 68.4)

2.3 Delay

It is known that PKPD models display a large variation in phase lag between patients
[van Heusden et al., 2013]. This lag can be represented as a delay, denoted T; (see
(2.1), in low-order models. A long model time delay 7, limits the performance of
the controller and makes it more conservative.

In the estimation of delay, there was a trade-off between the delay, the parameter
k and the non-linearity ¥, in (2.1) and (2.2). This comes from difficulties in uniquely
identifying gamma and 7, simultaneously, provided the excitation in representative
induction phase data [van Heusden et al., 2013]. To guarantee robustness, a choice
was made to overestimate the delay and consequently underestimate gamma. For
some children, the WAV cns index increased in the beginning of the induction phase
which may depend on pain during injection. This could also lead to an overesti-
mation of the delay. Due to possibility in overestimation, the delay is limited to
T; < 120 s for children. During anesthesia, the delay is most visible during the
induction phase, when the input essentially undergoes a step change.

The delay varies a lot between patient models and does not depend on age,
gender etc, see Figure 2.2 for dependence between delay and physical demographics
in the children data set. The adult data set yields similar appearance.
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Figure 2.2: Dependence between delay 7; and physical demographics. The model
set is children 6-16 y. A linear regression has been made for the data in each plot,
where the R? value is shown in the subcaption.
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2.4 Inter-patient variability

2.4 Inter-patient variability

The response to propofol displays a large variation between patients. The variability
comes from differences in distribution and elimination of the drug in the body, also
influenced by the patient’s age, body mass, liver function etc. [Bibian et al., 2005].

To guarantee robustness, a conservative feedback controller is required. Else, the
inter-patient variability may lead to over- or underdosing of anesthetic drugs for or
result in undesirable oscillatory behaviour [van Heusden et al., 2014]. Closed-loop
anesthesia must be able to safely handle the inter-patient variability. The variation
comes from differences in the pharmacokinetics and pharmacodynamics between
patients. Difference in PD shows that some patients require a larger plasma concen-
tration before reaching a certain clinical effect.

As mentioned in the previous section, full models are generally not automati-
cally identifiable from induction phase data. If they were, the inter-patient variability
would not be a problem and could be taken into account.

17



3

Method

We propose a method of minimizing the effects of inter-patient variability through
patient model partitioning. In this thesis, this will be handled in the following way:

1. Partitioning of the patient model set into subsets through clustering.

2. Design one controller for each subset, which maximizes performance while
ensuring robustness over the subset.

3. When a new patient is to be anesthetized, determine which subset the patient
belongs to by either given a priori demographic information or through the
induction phase response using a conservative controller and subsequently
switch to the controller associated with that subset.

Clinical induction data is used for analysis together with the patient models. The
clinical data consists of actual infusion rates and the corresponding measured depth
of hypnosis during surgery from studies resulting in [van Heusden et al., 2013] and
[van Heusden et al., 2017]. Information about protocols and ethics appeal can be
found in these articles. This clinical induction data is not presented directly in the
thesis but used for evaluation.

3.1 Partitioning

The main objective of this thesis is to make a suitable partition of an initial patient
model set. For example, if patient A should be anesthetized and if patient A responds
similarly to patient B who has been anesthetized earlier on, then patient A should
have similar controller settings to B. The methods described here were developed
and evaluated using two model sets described in Chapter 2 comprising 47 models of
children and 31models of adults. The patient models are clustered into two or more
subsets, and those in the same subset have the same controller settings. The goal is
that these controllers should perform better for patient models in the corresponding
subset than the corresponding controller synthesized for the (unpartitioned) set, with
preserved robustness.

18



3.2 PFartitioning based on physical characteristics

Patients within the same subset should react similarly to drug infusions and
surgical disturbances. Then, how can this similarity be quantified? In this thesis,
different methods of comparing patient models and clustering them into subsets
have been tested. Due to combinatorial complexity, not all possible partitions of the
patient model set are possible to evaluate. Instead, some clustering heuristics will
be proposed and compared.

All partitions were done in two subsets except for partitioning based on delay,
which also was partitioned into three subsets. The reason for partitioning in three
subsets was to see if there would be any improvement in implementing three sub-
sets instead of two. Partitioning in two subsets was made with median cut, meaning
that all patient models with values above the median belongs to a certain subset and
all values below the median belongs to the other subset. The reason that median
was used is to create two subsets of approximate same size. It might of course be
favourably to make another division due to the distribution of data. Since it was un-
clear where the limit should be drawn, median cut was implemented. For n subsets,
the limits for separation between subsets is percentiles, creating subsets of about the

same size. For n subsets, the percentiles are 120 /2190 / (n=1)-100,
n n n

3.2 Partitioning based on physical characteristics

One possibility is to base the partitioning on demographic data such as age, gender,
weight and height. The advantage of partition on these characteristics is that they
are known beforehand.

Partition on gender has been done for one subset with men and one with women.
The other partitions based on physical characteristics have been made using median
cut for partition into two subsets.

3.3 Partitioning based on delay

Since a long model time delay 7, limits the performance of the controller and makes
it more conservative, it is intuitive to partition the patient models depending on the
delay. Two subsets were created using median cut on delay and three subsets are
created using cut on suitable percentiles, see Section 3.1. The reason for choosing
partitioning in three subsets based on delay (and not the other methods) is that this
method was expected to result in the best attenuation of surgical disturbances. The
data distribution of delay in the two model sets are shown in Figure 3.1 and 3.2. As
seen in the figures, the distribution of delays shows of no clear division an therefore
it was not clear of how the partitioning should be made.

If a controller should be chosen depending on the delay, suitable settings can
not be decided before the anesthesia. When a new patient is to be anesthetized, a
conservative controller is chosen in absence of information. The actual delay must
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Figure 3.1: Distribution of delays T; from provided children model set.
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Figure 3.2: Distribution of delays 7; from provided adult model set.
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3.3 PFartitioning based on delay
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Figure 3.3: The proposed method for estimating delay from induction data. The
DOH is marked in blue, the initial value Ey is marked as red dashed line and the
limit is marked with a red line. The estimated delay is marked with a gray vertical
line.

then be estimated online. Estimation can be done during the induction phase when
there is no surgical stimulation and a more exciting control signal. When the delay
has been estimated, there can be a change to a more suitable controller.

In the following section a proposed method for determining the delay online
using induction phase data is proposed. The method has been developed with on-
line use in mind. Classification on delay has been made using simulations of the
induction phases and on the clinical induction phase data from which the models
in [van Heusden et al., 2013] and [van Heusden et al., 2017] were obtained. The
simulations were made both with and without noise, modeling measurement noise
as described in Section 3.5. Ey was estimated as the mean value from the first 30
seconds of DOH data, before any infusion. Then the delay is estimated as time from
infusion until the DOH drops below the level Ey — 6 for a certain time ¢, where &
and 7 need to be decided. An image of the proposed method used on simulated data
is shown in Figure 3.3.

The parameters ¢ and § were determined from simulations with and without
noise on the children model set using the nominal controller. Later on the same pa-
rameters were used on the adult model set. The resulting parameters to the proposed
method was r = 10 seconds and 6 = 1.5. This method was applied on simulated and
clinical induction data.

Depending on the estimated delay, a patient model was placed in the subset for
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Chapter 3. Method

short or long delay. The limit for being placed in a subset with short or long delay
was chosen as the median of the given delays for children and adults.

3.4 Partitioning based on on v-gap

The v-gap metric

One way of partitioning the patient models into two subsets is to take more informa-
tion into account. A method that is regularly used for comparing transfer functions
is the v-gap, described in [Vinnicombe, 2001]. The v-gap is a metric, such that pro-
cesses that behave similarly under (unitary) negative feedback, have a small v-gap.
That is, if 8y (P, P») is small then any satisfactory controller for P; will also be satis-
factory for P, [Vinnicombe, 2001]. This method is more purposeful than comparing
delays because the resulting closed-loop system is taken into account. A drawback
is that a dynamic patient models needs to be identified to calculate the v-gap.

The v-gap metric can be used as a comparison between two stable LTI systems,
here represented through their transfer function. Transfer functions can be visual-
ized as Nyquist curves in the complex plane.

To compute the v-gap, the Nyquist curves of the corresponding systems are pro-
jected onto the Riemann sphere. The Riemann sphere is a sphere of unit diameter,
tangenting the complex plane at origo. The Euclidean distance between two pro-
jected points of the Nyquist curves onto the sphere is called the chordal distance,
see Figure 3.4 [Vinnicombe, 2001].

The chordal distance d, in the scalar case (z1,z2 € C) is defined as

21 —Z
de(z1,22) = 21 = 22| 3.1)

V= zay/1-32’

where z* denotes the complex conjugate of z. The chordal distance between two

Figure 3.4: Projection of transfer functions onto the Riemann sphere, retrieved from
[Astrom and Murray, 2008] with permission from Karl Johan Astrom.
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3.4 Partitioning based on on v-gap

transfer functions P; and P; can be expressed as

k(P (jo),P(jo)) =d.(P,P) = e |§2((jj:)’>)|2—;11(i(1|’;2(jw)|2 . (32

where « is the point-wise gap between the two systems at frequency . From this we
can define the v-gap metric as the maximum distance between the Nyquist curves
for all frequencies [Vinnicombe, 2001]

5 — supk (P (jo),P»(jw)), if winding number condition holds. (3.3)
Y, otherwise, ’
where the winding number condition is given by
det(I+P5P)(j 0 v
5v<1<:> e( + 2 ])(Ja))7é w, (34)
wno det(/ +PyP)+n(P) —n(P) =0,

where wno denotes the winding number. The winding number can be stated as
wno(g) = ﬁ x the net increase in the argument of g(j®) as @ decreases from oo
to —oo [Vinnicombe, 2001]. The number of open right half plane poles of the plant
P is named 7 (P). In the models used in this thesis, there are no poles in the right
half plane. For all of the anesthesia models, the winding number condition holds.

The v-gap can be calculated for each pair of patient models, P; and P, and the
result can be represented using the dissimilarity matrix C, where C;; is the v-gap
between patient i and j and C;; = 0. The affinity/similarity matrix A is therefore
A =1 —C. The affinity matrix is symmetric with values of pairwise similarities,
where 0 represents equality and 1 maximal dissimilarity..

Partitioning using the affinity matrix

From the affinity matrix (or the dissimilarity matrix) one can perform clustering
to determine which patient models should belong to the same subset, i.e. have low
value of the v-gap. There are different methods to perform such clustering, but since
we do not have the exact coordinates but only pairwise distances, it leaves us with
fewer alternatives. Note that the pairwise distances are not Euclidean and that the
space is not known, which further complicates things.

The most common methods to determine the clusters from an affinity matrix
are hierarchical and spectral clustering. Different clustering methods should give
similar result if the data contains natural clusters [Bryan, 2004].

Hierarchical clustering

Hierarchical clustering considers pairwise distances. It does not require a prede-
fined number of clusters as input. The resulting clusters are typically visualized in
a dendrogram, see Figure 3.5. Elements are merged together and a merge is shown
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Chapter 3. Method
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Figure 3.5: A dendrogram showing the result of hierarchical clustering.

as a horizontal line. The x-axis shows the number of elements to be clustered and
the y-axis displays the distance between two clusters that are connected, called the
linkage distance. The described method is an agglomerative method, or "bottom
up", meaning that clusters are created pairwise and then merged as they move up
in hierarchy and create larger clusters. This means that the method is invariant on
starting point.

How the elements in the data set should be connected are determined by a link-
age function. The linkage function uses the distance information from the v-gap
calculation and links pairs that are close (similar) into clusters made up of two ele-
ments. Then, these binary clusters are linked to each other to create bigger clusters
until the entire data set are linked together in a hierarchical cluster tree, as shown in
Figure 3.5.

The most common linkage methods are single linkage, complete linkage, aver-
age distance. If we had Euclidean distances, other methods such as Ward’s method
[Ward, 1963] could be an alternative. Single linkage, complete linkage and average
distance are illustrated in Figure 3.6. Single linkage is sometimes also called nearest
neighbour. Clusters are merged together so that the similarity between two clusters
are determined by the smallest distance between elements in the two clusters. The
single linkage method can be expressed as [Manning et al., 2008]

I(r,s) = mindist (x4, Xs;), (3.5)

where x,; is the i element in cluster r and corresponding for s and ;.

Complete linkage merges two clusters together so that their similarity are deter-
mined by the largest distance between elements in the clusters. The method can be
expressed as

I(r,s) = maxdist (xyi,Xs;), (3.6)
Average linkage is a combination of the two methods above, expressed as
ny ng
I(r. Z Z dist (xri, Xs;), 3.7
nrn*‘ i=1j=

where n, is the number of elements in cluster » and n; is the number of element in
cluster s.
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Figure 3.6: Linkage methods in hierarchical clustering.

Depending on the choice of linkage method, resulting clusters may be differ-
ent in shape. For example, single linkage has a tendency to create clusters where
nearby elements of the same cluster have short distances between them, but ele-
ments of opposite ends of a cluster may be far from each other. This is taken care of
with the complete linkage method. The drawback with the latter method is instead
that it is more sensitive to outliers [Manning et al., 2008]. The average distance
method is a combination of single and complete linkage. In this thesis, the average
distance linkage method is used, since no information is known about the shape of
the clusters.

Spectral clustering

The general idea of spectral clustering is to look at eigenvalues and eigenvectors of
the similarity matrix. Two algorithms for spectral clustering are used in this thesis.
We have here labeled the algorithms Shi and Ng, after the first authors of [Shi and
Malik, 2000] and [Ng et al., 2001], in which they were introduced.

The Shi algorithm make use of the unnormalized graph Laplacian matrix L,
defined as [Shi and Malik, 2000]

L=D-A, (3.8)

where A is the affinity matrix and D is the degree matrix. The diagonal matrix D is
defined as a matrix where the (i,i)-element is the i row sum of A.

The algorithm partitions the graph by looking at the eigenvector corresponding
to the second smallest eigenvalue. The partition splits the eigenvector in two (or k)
clusters using a splitting point. Choosing an appropriate splitting point can be done
in different ways and one proposed choice is to use the splitting point 0, see [Shi
and Malik, 2000]. This will give us the final partition.

The Ng algorithm uses the normalized graph Laplacian Lyy,,, defined as [Ng et
al., 2001]

Lym =D~ V2LD'2, 3.9)

The algorithm takes k eigenvectors u1, ..., u; corresponding to the largest eigen-
values and constructs a matrix U with the eigenvectors as columns. Then this matrix
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is normalized so that each row of U has unit length

Ui = U/ (Y ULV, (3.10)
k

After this, a standard clustering method is used on U assuming k clusters to get
the final result. One can for example use K-means clustering [Ng et al., 2001]. K-
means clustering can be used since the data has been projected to a lower dimension
and is therefore more easily separable than before. K-means clustering cannot be
used directly since the actual positions of the coordinates are not known.

Ready-made functions for hierarchical clustering in MATLAB have been used
in this thesis. They are called ’linkage’ and ’cluster’. The methods for clustering us-
ing Shi and Ng methods was implemented using the pseudo-code in [von Luxburg,
2007]. In the Shi method, a limit must be chosen for the eigenvalues to make a par-
tition. This value is chosen as the median value of the eigenvalues to create subsets
of equal size.

3.5 Controller structure

For simulations in this thesis, the structure given in Figure 3.7 has been used. The
patient is modeled with a PKPD model, described in Chapter 2. The DOH is con-
trolled using a controller. The controller compares the reference value, r, and the
measurement value, y. The reference value r is the desired depth of hypnosis and y
is the measured clinical effect, the WAV cng index. Input u is the infusion rate of the
drug, scaled with patient weight and given in ml/kg/h or mg/kg/min.

The signal that controls the process is called the control signal, u. One of the
most common controllers is the PID controller, which is the controller used in this
thesis. Input to the controller is the control error e from which the controller de-
termines a control signal u. The error e is defined as e = r — y;;; where yy;; is the
filtered output. The PID controller consists of three parts, one proportional part (P),

i (t)

Figure 3.7: Closed-loop control of anesthesia with controller C, PKPD model (P),
monitor M, filter F, surgical disturbance d and measurement noise .
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3.5 Controller structure

one integrating part (I) and one derivative part (D). The standard form of the PID
controller, taken from [Astrom and Héagglund, 2006], is

1 d
uK(eJrTi/e(t)dZJer;), @3.11)

where K is the proportional gain, T; is the integral gain and 7y is the derivative gain.
The PID controller is often expressed in the Laplace domain, as

Uls) K<1+SIT_+Tds)E(s), (3.12)

Values of K, T; and T; must be chosen carefully to achieve performance and robust-
ness. The parameterization used in this thesis is the parallel form, chosen due to its
linearity in the controller parameters,

U(s) = (kp+];i+kds>E(s), (3.13)

so that k, = K, k; = k,/T; and kg = k,T;. Input e(t) to the controller is converted to
the interval (1,0).

Previously used controllers for the children and adult models are denoted nom-
inal controllers. The nominal controller for children used in this thesis was derived
and evaluated in [van Heusden et al., 2014]. Its parameters are:

ky=1.1 mg/kg/min/ WAV cns(normalized), k; =0.0061s, k; =665, (3.14)
and the corresponding controller for adults [Dumont et al., 2011] is
k, = 0.81 mg/kg/min/WAVcns(normalized), k; =0.0055s, k;=45s. (3.15)

The clinical effect E(¢) is measured with the NeuroSense NS-701 monitor. The
dynamics are well defined as [Zikov et al., 2006]

1

M(S):W,

(3.16)
The resulting DOH is affected by measurement noise n. High frequency measure-
ment noise are attenuated using a second order filter [van Heusden et al., 2014]

1

F(s)= — 3.17
)= e @3.17)
where Ty = 15 s is the filter constant.
Surgical disturbances are denoted d in Figure 3.7, and modeled as steps. They
increase the depth of hypnosis. Further explanations and modeling of surgical dis-

turbances can be found in [Struys et al., 2004]. The measurements are corrupted by
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noise, denoted n, which has been identified to be white with a standard deviation of
0.09 WAV N5 units, identified in [Soltesz et al., 2012].

In this setup, the surgical disturbances affect the signal before entering the mon-
itor. From this, we can set up the sensitivity function as the transfer function from d
to E. The sensitivity function is

1
S(s) = ’
(s) 1+ P(s)C(s)F (s)M(s)
where P(s) is the patient model, C(s) is the controller, F(s) is the filter and M(s) is
the monitor.

(3.18)

3.6 Controller synthesis

This section is a contribution from José Manuel Gonzélez Cava, who is preparing a
manuscript on controller synthesis for patient model sets of the type resulting from
partitioning in this thesis. The section describes the PID controller and measurement
filter optimization, which has been used to obtain controllers for the model set, each
considered subset, and individual patient models.

The approach has been to maximize some measure of performance, while ful-
filling constraints, which provide robustness guarantees. This is accomplished by
limiting the %> norm of the patient output y resulting from a step disturbance d, see
Figure 3.7. The transfer function from d to y is the sensitivity function S in (3.18).

To maintain robustness, 772, constraints on the sensitivity function S and its
complement 7 = 1 — S are imposed. Attenuation of measurement noise is governed
through an /% (energy) constraint on KS, where K = FC, the transfer function from
measurement noise n to control signal z. Maximum undershoot is limited to maxi-
mum M, = 0.1 of the amplitude of the disturbance. The constraint levels of (3.19)
were chosen as those corresponding to previously clinically evaluated controllers
(3.14) [van Heusden et al., 2013] and (3.15) [van Heusden et al., 2017].

The synthesis objective is formulated to maximize worst case performance over
the model set, while maintaining constraints. The optimization problem for the pa-
tient model set & is given by
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IR
min max Sk— (3.19)
K k=142 "i0],
subject to [ Skl < M
ke{l,...#(2)}
| Tlleo < M,
||KS](H2 < M
1
s — ) >Mm,.
(5.8 =m

The optimization was done in two steps: a global optimization followed by a
local one. The two-step approach was considered since the optimization problem
in general is non-convex meaning there can be multiple local optima. The global
optimization uses the algorithm simulated annealing, originally published in [Kirk-
patrick et al., 1983]. To understand the concept of the algorithm, one can compare
it with minimizing the energy of a system. When cooling a substance slowly, it will
sooner or later come to the lowest energy state. But, if the cooling acts quickly, the
substance might not fall into its lowest energy state and be caught in a local min-
imum, even if it is fully cooled. This comparison was made in [Kirkpatrick et al.,
1983] and is one argument for the algorithm. The algorithm is designed to perform
well on systems with multiple local optima.

The local optimization is nonlinear and gradient-based, called SLSQP based
on exact Jacobian and Hessian computations through dual complex numbers [Kan-
dasamy and Smarandache, 2012]. SLSQP uses gradients to find the minimum where
the gradient is zero. The starting point was the result from the global optimization
and the method is iterating until a minimum is found [Kraft, 1988].

The optimization algorithm yields the controller parameters k), k;, ks and the
filter coefficient Ty together with the resulting costs for each patient model after
global and local minimization where the cost is given as the .% norm described
above.
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4

Results

The results will primarily be presented though box plots, where the box shows me-
dian as a red line, the 25™ and 75™ percentile in blue, whiskers showing minimum
and maximum and outliers plotted individually as red *+’. Outliers are values greater
than g75 + 1.5(g75 — g25) and values smaller than go5 — 1.5(¢75 — g25) where g5 and
g75 are the 25" and 75" percentile of the data, respectively.

4.1 Initial controller and best case

As a first approach before the partitioning, the best and worst case is considered for
comparison. Best case denotes the case when the largest possible attenuation of sur-
gical disturbances over the model set is achieved, so that an individual controller is
synthesized for each patient. An individual controller for each patient is not possible
to implement as explained in Chapter 2, but is used for comparison. In the figures
are individual controller for each patient denoted 47 subsets. Worst case denotes the
(initial) nominal controllers in (3.14) and (3.15). This is denoted Nominal, 1 set. A
synthesized controller over the full model set are denoted Optimal, 1 set.

Costs for children are shown in Figure 4.1 with nominal, optimal and individual
controllers. The leftmost box plot displays the costs for the children models using
the nominal controller and the box in the middle displays the cost for all children
models with the same optimized controller. On the y-axis is the cost calculated as the
% norm (cost) scaled with the minimum value for the individualized controllers,
shown in the rightmost box plot. This scaling has been performed to facilitate com-
parison and is present in all box plots. Figure 4.2 shows the corresponding boxes for
the adult model set. Note that for adults, the costs for the optimal controller on the
entire model set are higher than for the nominal one. This is due to that the margins
are chosen from the children nominal controller and they are larger than the margins
for the adults nominal controller.

Simulated step responses resulting from a change in the reference r associated
with Figures 4.1 and 4.2 are shown in Figure 4.3 and 4.4, respectively. The figures
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Figure 4.1: Patient cost distribution for children model set using a nominal con-
troller, an optimal controller for the entire model set and an individual controller for
each patient model.
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Figure 4.2: Patient cost distribution for adult model set using a nominal controller,
an optimal controller for the entire model set and an individual controller for each
patient model.
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Figure 4.3: Simulations comparing step response for children model set using nom-
inal controller (blue), optimal controller (green) and individually calculated con-
trollers for each patient model (red). Set point is in black.

illustrate the DOH as well as the control signal, the infusion rate. The reference is
set to 50 WAV s units in all simulations and marked in black.

As expected, using an individualized controller for each patient gives highly im-
proved step responses compared to using the nominal controller. This improvement
can be seen as decreased induction time, smaller undershoot and a shorter settling
time. The optimized controller for the entire model set result in longer induction
times and smaller drug use than both the nominal controller and using individu-
alized controllers. Step responses for adults have greater overshoot than those for
children.

Figures 4.5 and 4.6 both display the costs for the individualized controllers on
the y-axis. The costs are plotted against delay as well as physical characteristics,
described in Table 2.1. Linear regression has been done for each plot, where the R?
value is shown in each subcaption. When comparing the cost comparing to different
characteristics, it is noticeable that there is a relationship between increased cost
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Figure 4.4: Simulations comparing step response for adult model set using nominal
controller (blue), optimal controller (green) and individually calculated controllers
for each patient model (red). Set point is in black.

and increased delay. The other attributes shows an almost non-existent correlation
to cost except Ey that displays a small correlation.

33



Chapter 4. Results

3 3
_25 S 25
8 ’ 8
Q o
g2 g2
I E :
g g
S 15t 215
1 1
0 50 100 6 8 10 12 14 16
Delay (s) Age (y)
(a) Delay, R? = 0.7634 (b) Age, R =0.0126
3 s 3
525 55 :
5 Z .
2 2 s : .
= ;! 82 i
g E :
215 =} '
“ 215 : :
: H
1 : ’
1
88 90 92 9%
E0 Boy Girl
(¢) Ey, R?2 =0.3352 (d) Gender
3 3
_ 25 . o _ 25
8 ’ 8
Q Q
o . g
= =
B . E
S 15 ’ > 15 :
1 1
120 140 160 180 20 40 60 80
Height (cm) Weight (kg)
(e) Height, R? = 0.0434 (f) Weight, R = 0.0500

Figure 4.5: The ideal case with an individual controller for each patient model where
the cost is plotted with different physical attributes and delay. The model set is
children 6-16 y. The cost is a measure of the ability to suppress disturbances, where
a lower cost means better suppression ability. A linear regression has been made for
the data in each plot, where the R? value is shown in the subcaption.
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Figure 4.6: The ideal case with an individual controller for each patient model where
the cost is plotted with different physical attributes and delay. The model set is adults
38-82y. The cost is a measure of the ability to suppress disturbances, where a lower
cost means better suppression ability. A linear regression has been made for the data
in each plot, where the R? value is shown in the subcaption.

4.2 Partitioning based on physical characteristics

Results of partitioning into two subsets on physical characteristics are shown in
Figure 4.7 for children and Figure 4.8 for adults. The partitions are made on median,
described in Section 3.1. Partition on gender are made on boy/girl and man/woman.

For children, a partition on age or height means a lower cost and are therefore
favourable comparing to partitioning based on the other considered demographic
characteristics. In the adult case, partitioning based on weight yield the smallest
cost. Comparing to the optimal controller for the adult set, partition on gender gives
the same worst cost.
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Figure 4.7: Cost for each patient in the children model set using a controller chosen
from partitioning. Partitioning is done into two subsets of small/large age, height,
weight and Ey, and between boy and girl.
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Figure 4.8: Cost for each patient in the adult model set using a controller chosen
from partitioning. Partitioning is done into two subsets of small/large age, height,
weight and Ey, and between boy and girl.
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4.3 Partitioning based on delay

Partition on delay into two and three subsets compared to one set (explained in
Section 4.1) and individual subsets are shown in Figure 4.9 for children and Figure
4.10 for adults. The delay used here for partition is the delay 7y, introduced in
Section 2.1 in the PD models. In the figures, one can see that introducing three
subsets instead of two only resulted in a marginal improvement. Also, two subsets
resulted in a small average reduction of the cost compared to one set.

The result from estimation of delay using the proposed method are shown in
Table 4.1. The proposed method created partitions into short/long delays and these
partitions were compared to the partitions into two subsets in Figures 4.9 and 4.10.
As seen in the table, the proposed method estimated the delay with good accuracy.

The estimated delays from the proposed method in Section 3.3 differs from val-
ues of T; from the provided models. The delays estimated using these two methods
are displayed in Figure 4.11 for children and Figure 4.12 and adults.

Simulated step responses resulting from a change in the reference r (see Section
3.5) displaying the result from partitioning based on delay can be seen in Figure
4.13 for children and Figure 4.14 for adults. Here, the patient models have been
simulated with their assigned controller according to the classification. The step
responses show of a small undershoot and short settling time, even though the in-
duction time seem to have increased slightly compared to the nominal controller
in the children set. The average minimum WAV cns index reported in the induction
phase was 47 for children and 45 for adults. The adult set showed a tendency to
overshoot, where the DOH exceeds the recommended level of 60 for some patient
models. Oscillatory behaviour was detected for two patients in the adult model set.
The control signal was approximately constant throughout the simulation except for
the patients models with oscillatory behaviour.

Bode plots displaying the open-loop transfer functions for linearized discrete
models with partitions into two subsets with delay are shown in Figure 4.15 for
children model set and Figure 4.16 for adult model set. The partition into two groups
on delay for children can easily be spotted in the the phase plot. The division is clear
around higher frequencies but is less significant for the adult model set.

Table 4.1: Accuracy for classification on delay with proposed method for two sub-
sets with short/long delay compared to partitions made from delays of the provided
models. Classification is done on simulated data without noise, simulated data with
noise and clinical data.

Simulation,  Simulation,
without noise  with noise

Children 0.9787 0.8723 0.8298
Adults 0.9032 0.8387 0.7742

Clinical data
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Figure 4.9: Cost for each patient in the children model set using a controller chosen
from partitioning. Partitioning is done into two subsets of short/long delay.
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Figure 4.10: Cost for each patient in the adult model set using a controller chosen
from partitioning. Partitioning is done into two subsets of short/long delay.
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Figure 4.11: Children model set. The estimated and real (from the provided models)
delay determined from clinical induction phases, used for classification on delay.
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Figure 4.12: Adult model set. The estimated and real (from the provided models)
delay determined from clinical induction phases, used for classification on delay.
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Figure 4.13: Simulations comparing step response for children model set us-

ing nominal controller (blue) and controller chosen according to classification on
short/long delay (red) made on clinical induction phases. Set point is in black.
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Figure 4.14: Simulations comparing step response for adult model set using nomi-
nal controller (blue) and controller chosen according to classification on short/long
delay (red) made on clinical induction phases. Set point is in black.
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Figure 4.15: Bode plot showing the partition into two subsets (one in blue and one in
red) for open-loop transfer function with linearized discrete children models using
partition on short/long delay.
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Figure 4.16: Bode plot showing the partition into two subsets (one in blue and one
in red) for open-loop transfer function with linearized discrete adult models using
partition on short/long delay.
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4.4 Partitioning based on v-gap

Dissimilarity matrices obtained from calculating the v-gap between all pairs of pa-
tient models are shown in Figure 4.17 for children and Figure 4.18 for adults. All
pairwise v-gaps are shown as a color in the matrix, with patient numbers on the x-
and y-axis. The matrix is symmetric so that each pairwise distance is shown two
times. Darker blue in the image means more similar and yellow means more dis-
similar.

From the dissimilarity matrix, different types of clustering are performed. The
dendrograms from the hierarchical clustering are shown in Figures 4.19 and 4.20.
The resulting costs using the three clustering methods are shown in Figures 4.21
and 4.22.

Bode plots displaying the open-loop transfer function for linearized discrete
models with partitions into two subsets with v-gap and the Ng method are shown in
Figure 4.15 for children model set and Figure 4.16 for adult model set. The partition
is clearly identifiable in the bode plot for children for low frequencies, for both gain
and phase. For adults, the partition is visible particularly in the phase plot. These
bode plots displays that the v-gap takes both delay and gain into account in the
partitioning.

5 10 15 20 25 30 35 40 45

Figure 4.17: Dissimilarity matrix for 47 patients in the children model set, showing
the v-gap between all pairs of patient models. Dark blue (zero) means equal and
yellow (0.5) means different.
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Figure 4.18: Dissimilarity matrix for 31 patients in the adult model set, achieved
from v-gap between all pairs of patient models. Dark blue (zero) means equal and
yellow (0.5) means different.
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Figure 4.19: Dendrogram obtained through hierarchical clustering performed on
the dissimilarity matrix from pairwise v-gap between the 47 considered children
models. The linkage method was average linkage.
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Figure 4.20: Dendrogram obtained through hierarchical clustering performed on the
dissimilarity matrix from pairwise v-gap between the 31 considered adult models.
The linkage method was average linkage.
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Figure 4.21: Cost for each patient in the children model set using controllers syn-
thetized upon clustering. Partitioning was done into two subsets using v-gap and
different clustering methods.
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Figure 4.22: Cost for each patient in the adult model set using controllers syn-
thetized upon clustering. Partitioning was done into two subsets using v-gap and
different clustering methods.
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Figure 4.23: Bode plot showing the partition into two subsets (one in blue and one in
red) for open-loop transfer function with linearized discrete children models using
clustering on v-gap. The clustering method was spectral clustering with the Ng
method.

46



4.4 Partitioning based on v-gap

=X =X

Magnitude (abs)
3

Phase (deg)
} =
(=)

-360
1 00

Frequency (rad/s)

Figure 4.24: Bode plot showing the partition into two subsets (one in blue and one
in red) for open-loop transfer function with linearized discrete adult models using
clustering on v-gap. The clustering method was spectral clustering with the Ng
method.
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Discussion

Reducing the effects of the inter-patient variability results in safer closed-loop con-
trolled anesthesia. In this thesis, different partitioning methods for minimizing the
effects of inter-patient variability have been evaluated.

For our combination of performance measure and robustness constraints, opti-
mization on the entire model set is not sufficient because the resulting controller
becomes too conservative. Optimal controllers for each patient is neither possible,
due to difficulties to guarantee reliability in identified models. For fewer subsets
there are no universal method to find an optimal partitioning, due to the combinato-
rial complexity. Therefore heuristic methods have been implemented, with all their
limitations.

When comparing all of the performed partitions in this work, it is clear that im-
provement in terms of reduced cost can be achieved by introducing subsets where
reduced cost means better attenuation of surgical stimulation disturbances. For par-
titioning into two subsets, partitioning based on v-gap gives the lowest cost for both
children and adults. Partitioning based on age for children turned out to be almost
as good as partitioning based on v-gap. This resulting synthesized controller for
children was close in performance to the individually synthesized controllers, with
guaranteeed robustness. For adults, the method with the lowest worst cost except
for v-gap based methods is partitioning based on weight. Partitions into more than
two subsets did not show of any significant improvement.

The evaluated partitioning methods have their advantages and disadvantages.
The first implemented method was partitioning based on demographic characteris-
tics. Demographic characteristics are simple to measure and are known beforehand
and has no significant disadvantage. The second method was partitioning based on
delay. The delay is difficult to estimate online and this thesis provides a method for
estimating it during induction, which partly resolves this issue since the proposed
method overestimates the delay. However, the resulting controllers became less ag-
gressive which is favourable. If the delay is estimated online, a controller must be
chosen initially, preferable the controller optimized for the entire model set. After
partitioning, a more suitable controller can be switched to. A long time delay was
expected to limit the performance of the controller and make it more conservative.
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Chapter 5. Discussion

Therefore, it was expected that partitioning based on delay would result in a low
cost. That was not the case and partitioning on delay only gave a small reduction in
the worst cost.

The third method handles with partitioning based on v-gap. Partitioning based
on Vv-gap is not possible to implement in clinical practice as long as a full credible
dynamic model cannot be identified during induction. The reason for studying the
v-gap is to find the best possible partition into two subsets and compare the other
partitions with it. If any of the other studied parameters we use for partitioning gives
the same result as the v-gap, then it can be assumed that this parameter is the most
important one in the patient model and the one that we should use for partitioning.

Partitions into two subsets have been made using median cut for partitioning
based on delay and physical characteristics. As seen in the histograms in Figure 3.1
and Figure 3.2, the distributions are not clearly separated into two clear subsets.
This means that another partition into two subsets could be preferable. This is cap-
tured by the clustering with v-gap where the clusters differ in size, and the worst
cost is low. This leads into analysis of outliers. When looking at the dissimilarity
matrices generated by the v-gap, one can see some patient models that are stand-
ing out. Two examples are patient number 32 and 45 in the children model set in
Figure 4.17. These patient models differs a lot from the rest, indicated by yellow
in the dissimilarity matrix. They are similar to each other though, and are clustered
together in the dendrogram, at the far right in Figure 4.19. In the dendrogram for
adults (Figure 4.20), there is one patient model standing out and clustered into its
own cluster. Still, the resulting cost from the hierarchical clustering is relatively low
which means a good partition.

In this thesis, it has been shown that partitioning into three subsets instead of
two only yields a marginal improvement in reduced cost, as seen in Figures 4.9
and 4.10. It is easy to partition into more subsets, but is unnecessary if the profit is
marginal.

The controller synthesis method takes the objective of minimizing the sensi-
tivity function when the input is a step while honoring robustness. Both objective
and constraints can be chosen differently to receive a controller with other desired
properties. The optimization algorithm tries to minimize the worst cost in the entire
model set. Another approach could be to minimize the average cost instead. If this
approach would be implemented, it will lead to an overall improvement, but may
jeapordize the robustness of some individuals.

Simulations display reduced induction time as well as smaller undershoot with
controller optimization, both with the entire model set and subsets, compared to the
nominal controllers developed in [van Heusden et al., 2014] for children and [van
Heusden et al., 2017] for adults. It is unclear if this effect is a coincidence for these
specific patient models, or if it is more generic. Regardless, it is a pleasant effect.
For adults, two simulations exhibit oscillatory behaviour. It might be relevant to
choose other margins for the adult model set to avoid this behaviour.

If no partition would have displayed the same low cost as the v-gap, then it
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could mean that the most important parameter is not found and evaluated in this
thesis, or that it does not exist a parameter that can be determined a priori or online
for partitioning into two subsets for best result. Partitioning based on age for chil-
dren yields approximately the same result as partitioning based on v-gap and it can
therefore be concluded that this parameter is important in the children models. For
adults, none of the other partitions gave as low cost as partitioning based on v-gap
and the conclusion that can be drawn from this is that it might not exist a simple
parameter upon which the adult models should be partitioned.

5.1 Limitations

As in all studies, this project has its limitations. One limitation that has one of
the greatest impacts is the limited model set, both for children and adults. It was
assumed that this amount of models reflects the population. Also, the adult model
set does not contain any adults younger than 38 years. It is of importance to keep
in mind that patients that were difficult to model are not part of this study and were
excluded in a previous work. Therefore, this study may not reflect the true inter-
patient variability.

In classification on clinical induction data, it is of importance to remember that
limited excitation and a high noise level gives low confidence in the resulting clas-
sification. This affects automatic classifiers, such as the proposed method for clas-
sification on delay or when a full dynamic model is identified.

5.2 Future work

A possible extension of the work presented in this thesis is to implement another
classifier that can be used on induction phase data. By using the entire induction
phase instead of only the delay, more dynamics (such as induction time) are taken
into account. Therefore, it is appropriate to implement a classifier for sequences.
One example of classifier that works well for time sequences is a recurrent neural
network. The neural network remembers previous data and can be used to predict in
which partition a new anesthetized patient should belong, so that similar induction
phases will be given the same controller. The classification using a recurrent neural
network would be unsupervised and the controller synthesis from this thesis could
be implemented as an evaluation of the success of the classification.

In this thesis, partitioning in three subsets were only implemented for partition-
ing based on delay. It is possible that the improvement from two to three subsets
would be more than marginal (as it were for partitioning based on delay) for other
partitioning methods. Therefore, it would be interesting to evaluate the partitioning
in three subsets for all partitioning methods in this thesis.

It was clear that outlier models affected the resulting costs, particularly in the
partitioning based on v-gap. If the outliers were excluded in the analysis, the re-
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5.2 Future work

sulting cost could probably be reduced further. However, by excluding outliers, the
model set would lose some of its inter-patient variability which must be considered.

51



6

Conclusion

Conclusions that can be drawn from the work in this thesis are that the impact of
surgical stimulation disturbances can be reduced by patient model partitioning. Two
subsets resulting from partitioning are sufficient to significantly reduce the effects
of the inter-patient variability in sensitivity of the anesthetic drug. Simulations have
been done to show the improvement using two subsets compared to the nominal
controller (used in previous research and clinical trials) and to a controller that were
optimized over the model set.

Partitioning based on the v-gap metric resulted in satisfactory attenuation of
surgical disturbances for both children and adults. As long as a full credible dynamic
model is not possible to identify during clinical practice, this method is not possible
to implement, even though the resulting attenuation was the largest of all evaluated
methods.

For clinical practice, partitioning based on demographics was proposed. This
thesis has come to the conclusion that age is a relevant parameter to describe differ-
ence in drug sensitivity for children. A controller should be chosen depending on
"low" and "high" age. For adults, weight is a suitable parameter when choosing con-
troller. These parameters have the advantage of being easy to measure and therefore
this proposed method using demographics is easy to implement in clinical prac-
tice. The resulting controllers from partitioning for children and adults have been
synthesized in this thesis with acceptable performance and preserved robustness.

The proposed method in this thesis of choosing a controller based on age for
children and weight for adults reduces the effects of the inter-patient variability.
This results in safer closed-loop controlled anesthesia with less risk of under- and
overdosage.
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Nomenclature

Symbols

1) Parameter in estimation of delay from induction data
Oy The v-gap

n Number of open right half plane poles

Y Nonlinearity parameter in Hill function

K Point-wise gap between two transfer functions
Ho Vector norm

7 Euclidean norm

\ Greek letter Nu

A Affinity/similarity matrix

C Dissimilarity matrix

C. Concentration at effect site

Cp Blood plasma concentration

D Degree matrix

d Surgical stimulation disturbance

d. Chordal distance

E Clinical effect

e Control error, e =r—y

Ey Clinical effect in absence of drug
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ECso

50 % clinical effect

Identity matrix

Parameter in PD model

Derivative gain

Integral gain

Proportional gain

Transfer function from n to u
Unnormalized graph Laplacian matrix
Linkage, distance between two linked clusters
Normalized graph Laplacian matrix
Maximum sensitivity

Maximum complementary sensitivity
Maximum undershoot

Maximum value of KS

Measurement noise

Setpoint for y

Sensitivity

Laplace transform variable

Complementary sensitivity

Parameter in estimation of delay from induction data

Parameter in PD model, time delay

Filter parameter

Propofol infusion rate

Measured clinical effect in WAV s units
Complex number

Complex conjugate of z
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mg/kg/min/WAV cxs
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mg/kg/min
(100,0)
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Acronyms

BIS Bispectral index

DOH Depth of hypnosis

EEG  Electroencephalogram

LBM Lean body mass

LTI Linear time invariant system

PD Pharmacodynamic (model)

PID  Controller with proportional, integral and derivative part

PK Pharmacokinetic (model)

PKPD Combined PK and PD (model)

SLSQP Sequential Least Squares Programming. Local optimization method
WAV cens Wavelet-based index for measure of consciousness in anesthesia

wno  Winding number
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