
  

  

Abstract— Sleep disorder is one of many neurological diseases 

that can affect greatly the quality of daily life. It is very 

burdensome to manually classify the sleep stages to detect sleep 

disorders. Therefore, the automatic sleep stage classification 

techniques are needed. However, the previous automatic sleep 

scoring methods using raw signals are still low classification 

performance. In this study, we proposed an end-to-end 

automatic sleep staging framework based on optimal spectral-

temporal sleep features using a sleep-edf dataset. The input data 

were modified using a bandpass filter and then applied to a 

convolutional neural network model. For five sleep stage 

classification, the classification performance 85.6% and 91.1% 

using the raw input data and the proposed input, respectively. 

This result also shows the highest performance compared to 

conventional studies using the same dataset. The proposed 

framework has shown high performance by using optimal 

features associated with each sleep stage, which may help to find 

new features in the automatic sleep stage method. 

 
Clinical Relevance— The proposed framework would help to 

diagnose sleep disorders such as insomnia by improving sleep 

stage classification performance. 

I. INTRODUCTION 

Sleep is an important factor that directly affects our health 
and quality of life [1]. However, sleep disorders are 
widespread in most people and can cause serious health 
problems that affect the quality of life [2]. Some of these sleep 
disorders should be diagnosed using advanced techniques [2, 
3]. Polysomnography (PSG) is one of the experiments with 
advanced technology that requires multi-modal bio-signals 
such as electroencephalogram (EEG), electrooculogram 
(EOG), electrocardiogram (ECG), and electromyogram (EMG) 
[4, 5]. In a conventional process, the sleep experts score and 
grade the sleep stages in manually [6]. However, it is very 
inefficient and costly to inspect the PSG signals and classify 
the sleep stages manually. 

To alleviate this, automatic sleep stage classification using 
deep learning has recently been widely attempted [7-11]. 
Indeed, the excellence of deep learning has already been 
demonstrated in many studies using EEG signals [12, 13]. 
Supratak et el. [7] proposed DeepSleepNet, which uses raw 
single-channel EEG. It was the first attempt in that field to use 
deep learning. Even so, the study suggested quite a complex 
network, including the use of two-stream convolutional neural 
networks (CNN) and bidirectional long short-term memory 

(LSTM). Phan et al. [8, 9] also proposed a novel CNN 
framework. They exploited one EEG channel and one EOG 
channel with a CNN architecture for classification. 
Additionally, they added a special layer, named multi-task 
softmax layer which is suitable for joint classification and 
prediction. It works with the multi-task loss function which 
penalizes for both misclassification and misprediction on a 
training example. In the most recent study, Patanaik et al. [10] 
and Yildirim et al. [11] proposed a deep learning model for 
automated sleep stages classification. They also used CNN for 
solving this issue. Unlike previous studies, they stacked lots of 
layers to extract the most effective features from the input data. 
It works more successfully than the other methods in terms of 
overall accuracy. However, previous methods still have low 
sleep stage classification performance for practical use. 

In general, there are several criteria for classifying sleep 
stages. Two most dominant criteria are R&K standard, which 
was proposed by Rechtschaffen and Kales [14], and AASM 
which was developed by the American Academy of Sleep 
Medicine [15]. We followed the more up-to-date standard of 
this, AASM for classifying sleep stages. In AASM criterion 
divided sleep into five stages: wake (W), three non-rapid eye 
movement (NREM) stages (N1-N3), and rapid eye movement 
(REM) [1]. During W stage, alpha activity (8-12 Hz) becomes 
prominent, particularly in the occipital region [16]. N1 is a 
transitional stage between W and N2. This stage is 
characterized by the loss of alpha activity and the appearance 
of theta activity (4-8 Hz) [1]. N2 is the stage where the actual 
sleep begins, this stage produces a unique frequency waveform 
called the sleep spindle (12-15 Hz) [17]. N3 is considered as 
deep sleep because the function of the brain is significantly 
reduced. In this stage, mainly the delta wave (0.5-4 Hz) with 
the strongest amplitude appears [18]. Lastly, the low-voltage 
and fast activity reappear in the REM sleep, especially 
increased power in the theta waves [19]. Although there are 
clear frequency characteristics for each sleep stage, previous 
studies have not used these features so far. 

In this paper, we propose an automatic sleep stage 
classification framework using spectral-temporal sleep 
features. We hypothesized that using the optimized temporal-
spectral features can improve the performance for the 
automatic sleep stage classification higher. This study would 
help determine optimal features associated with sleep for 
automatic sleep stage classification.
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II. MATERIALS AND METHODS 

A. Dataset 

The sleep-edf (expanded) dataset [20] was used for our 
study. The 145 out of 153 PSG data were included because of 
excluding 8 which have problems to load. It was composed of 
77 subjects who are between 25 and 101 years (40 females, 
average age 58.7). These PSG recordings include two bipolar 
EEG channels (Fpz-Cz and Pz-Oz), one horizontal EOG 
channel, and one submental chin EMG channel. The EEG and 
EOG signals were each sampled at 100 Hz, and EMG signals 
were sampled at 1 Hz. Also, each 30 seconds fragment was 
scored based on the R&K manual. Also, we used one EEG 
channel (Fpz-Cz) and one EOG channel (horizontal). Fig. 1 
denotes that its hypnogram of the sample PSG signals of 
SC4071EC. 

B. Proposed Features 

A bandpass filter was applied to preprocess raw input data 
[21]. The input of the model consisted of a matrix with six 
rows, each row is sequentially raw EEG signal (Fpz-Cz), 
bandpass filtered EEG signals according to each band (delta: 
0.5-4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz, and sleep spindle: 12-
15 Hz), and raw EOG signal (horizontal) (Fig. 2). This input 
data was constructed in that the specific frequency appears 
prominently depends on the sleep stage [19]. We compared in 
two cases: the control and the experimental groups. In the 
control group, we used the EEG and EOG signals applied to 
the notch filter at 50 Hz to remove power-line noise. On the 
other hand, the experimental group was adjusted by applying 
the proposed method as the input data.  

C. CNN Architecture 

We used a CNN that is composed of four convolution 
layers and two max-pooling layers (Table I). This architecture 
was inspired by the representation learning of DeepSleepNet 
[7]. At the first layer, we applied a kernel with a size of 200 
because the dataset was recorded 100 Hz and the lowest 
bandpass that we considered is 0.5 Hz. Then, the smaller filter 
size was applied at the following layer to capture well the 
temporal information. By increasing the kernel size as the 
layer deepens, the model can learn different frequency features 
according to the sleep stage [7]. However, because the size of 
the input data in control and experimental groups are different, 
the used model was inevitably different. We kept other 
parameters and adjusted only the height of the filter size to 
minimize the variation of the model. The values in parentheses 
at the Table I are the parameters of the model for the control 

 

Figure 1. The hypnogram of sample PSG signals records obtained from the 
sleep-edf (expanded) database. This data of SC4071EC were recorded for 7.7 
hours and the ground truth label was changed to meet the AASM standard. 

  
Figure 2.  The preprocessed input data. The first and last rows represent the 
raw EEG (Fpz-Cz) signal and the raw EOG (horizontal) signal, respectively. 
The gray area represents the bandpass filtered data in the delta (0.5-4 Hz), theta 
(4-8 Hz), alpha (8-12 Hz), and sleep spindle (12-15 Hz), respectively. 

group; those are the model for the experimental group. 

For all experimental results, every dataset was repeatedly 
trained using 50 epochs. We used cross-entropy as a loss 
function. Also, the Adam optimizer was selected for boosting 
the learning process of the proposed model. For 
hyperparameters, we used a batch size of 10, a learning rate of 
0.00001 and weight decay by 0.003. For evaluating the 
proposed method, we applied 20-fold cross-validation. The 𝜅-
value and classification accuracy were used for the 
performance measurement criteria [22, 23]. 

TABLE I.  DETAILS OF LAYERS AND PARAMETERS USED IN THE PROPOSED CNN MODEL 

a. Rectified linear unit.

Number Layer type 
Number 

of filters 
Kernel size Stride 

Activation 

function 
Output size 

1 Convolution 1 10 200 × 1 1 × 1 ReLUa 10 × 2801 × 6 (10 × 2801 × 2) 

2 Max-pooling 1 10 - 2 × 1 - 10 × 1400 × 6 (10 × 1400 × 2) 

3 Convolution 2 20 32 × 2 (32 × 1) 1 × 1 ReLU 20 × 1369 × 5 (20 × 1369 × 2) 

4 Convolution 3 30 128 × 2 (128 × 1) 1 × 1 ReLU 30 × 1242 × 4 (30 × 1242 × 2) 

5 Convolution 4 40 512 × 4 (512 × 2) 1 × 1 ReLU 40 × 731 × 1 

6 Max-pooling 2 40 - 2 × 1 - 40 × 365 × 1 

7 Fully-connected 1 1 - - ReLU 100 × 1 

8 Fully-connected 2 1 - - Softmax 5 × 1 
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where 𝑃0  and 𝑃𝑒  denote the accuracy and the probability of 
chance rate, respectively. 

D. Spectral Power Analysis 

We additionally analyzed the power spectral density (PSD) 
in each stage to investigate what the CNN model is learning [5, 
17]. It is widely used to describe how the power of the signal 
or time series is distributed over frequency [24-25]. The PSD 
was calculated in the delta, theta, alpha, sleep spindle bands 
like the proposed feature. 

III. RESULTS 

A.  Classification Performance for Five Sleep Stages  

The results are presented in the form of a normalized 
confusion matrix in Fig. 3. According to the result, overall 
accuracy and 𝜅-value were 85.6%, 0.82 for the control group 
and 91.1%, 0.889 for the experimental group, respectively. 
Both groups showed high performance in W and N3, while 
relatively low performance in REM, N1, and N2. The lowest 
classification performance was N1 with 58.5% and 71.5% in 
the control and experimental groups, respectively. Eventually, 
the performance differences between the two groups 
represented in N1 and N2. The N1 was mainly misclassified 
by REM, and N2 was misclassified primarily by N1. 

B.  Performance Comparison with Other Methods 

Table II indicates the five-class classification performance 
and the accuracy of each class over the previous studies using 
the sleep-edf (expanded) dataset. The proposed method shows 

the highest accuracy compared to the related works for N1, N3 
and overall accuracy (71.5%, 95.8% and 91.1%, respectively). 
Also, the 𝜅-value is 0.889, indicating the highest value than 
other methods. However, it represented relatively low 
performance than other methods for REM and N2 stages. 

C.  Spectral Power in Five Sleep Stages 

We investigated the PSD in each sleep stage (Fig. 4). As 
the sleep progresses from the W stage to the N2 stage, the 
power of the alpha band is weakened, and the power of the 
sleep spindle band is strengthened. In the N3 stage, delta 
power was increased, but other powers were decreased. Lastly, 
in the REM stage, theta and alpha powers became increased. 
In summary, each sleep stage has mainly spectral power. 

IV. DISCUSSION AND CONCLUSION 

In this study, we proposed a new end-to-end automatic 
sleep stage classification method using optimal spectral- 
temporal features. As a result, the classification performance 
using the proposed model was much higher than the 
conventional performance, especially in the N1 stage.  

We considered two reasons for higher performance. First, 
we used optimal input data for sleep classification. In each 
sleep stage, the prominent frequency bands clearly appear [19, 
26]. By using the optimal feature associated with sleep, the 
proposed model seems to learn the spectral characteristics in 
each sleep stage. Second, an appropriate CNN model was 
applied to deal with the modified input data. The used model 
was designed to capture the time-series features of the input 
data at the shallow layers and the frequency-domain features 
at the deeper layers [7]. 

 

Figure 3.  The normalized confusion matrix of (a) the control group and (b) the experimental group. Each number in the cell is the accuracy according 

to each class. The columns denote predicted labels and the rows are true labels. (W: wake, REM: rapid eye movement, N1: Non-REM 1, N2: Non-
REM 2, N3: Non-REM 3) 

TABLE II.  COMPARISON BETWEEN THE PROPOSED METHOD AND OTHER METHODS USING THE SLEEP-EDF DATASET 

a. Electroencephalogram, b. Electrooculogram, c. Convolutional neural networks, d. Bidirectional-long short-term memory.

Study 
Number of 

Channels 
Method 𝜿-value 

Accuracy (%) 

Overall W REM N1 N2 N3 

Supratak et al. [6] 1 EEGa CNNc + bi-LSTMd 0.775 82.0 83.4 83.9 50.1 81.7 94.2 

Phan et al. [7] 1 EEG + 1 EOGb CNN  0.779 82.3 75.5 90.6 31.9 86.8 86.7 

Yildirim et al. [10] 1 EEG CNN 0.873 89.8 97.2 88.8 48.2 84.2 77.1 

Proposed 1 EEG + 1 EOG CNN 0.889 91.1 96.1 81.2 71.5 75.4 95.8 



  

 
Figure 4.  The PSD ratio according to the frequency domain of each class. 
Each bar represents the ratio occupied by the PSD value of each frequency 
domain in the corresponding sleep stage. 

There are some limitations to this study. First, the proposed 
method showed relatively low performance at the N2 and 
REM. It is thought to a trade-off caused by the classifier 
learning to fit more N1. Second, the classification performance 
of N1 is still relatively lower compared to other stages. This is 
because the number of samples in the N1 stage is too small. 
The imbalance in the class ratio is associated with 
classification performance [27-28]. It is necessary to classify 
the sleep stage using the data augmentation to solve the class 
imbalance. Lastly, we only compared with the studies used 
sleep-edf dataset, but it needs to compare with several studies 
using other sleep datasets. 

In conclusion, the proposed framework is valuable in that 
it does not change the whole network, but just extend the 
kernel size as the added number of bandpass filtered signals by 
applying the optimal feature. Therefore, our study would apply 
to other frameworks to improve the performance in sleep stage 
classification for lessening the burden of sleep experts. 
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