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Abstract— We proposed a target-based cone beam computed 

tomography (CBCT) imaging framework in order to optimize a 

free three dimensional (3D) source–detector trajectory by 

incorporating prior 3D image data. We aim to enable CBCT 

systems to provide topical information about a region of 

interest (ROI) using a short-scan trajectory with a reduced 

number of projections. The best projection views are selected 

by maximizing an objective function fed by the image quality 

by means of applying different x-ray positions on the digital 

phantom data. Finally, an optimized trajectory is selected 

which is applied to a C-arm device able to perform general 

source–detector positioning. An Alderson-Rando head 

phantom is used in order to investigate the performance of the 

proposed framework. Our experiments showed that the 

optimized trajectory could achieve a comparable image quality 

in the ROI with respect to the reference C-arm CBCT while 

using approximately one-quarter of projections. An angular 

range of 156° was used for the optimized trajectory. 

I. INTRODUCTION 

Nowadays, cone beam computed tomography (CBCT) has 

become an important tool for interventional three 

dimensional (3D) imaging as well as patient setup and dose 

verification in external beam radiotherapy [1]. In 

conventional CBCT, a circular isocentric source-detector 

trajectory is used to acquire 2D projections in order to 

reconstruct a 3D volume. However, this standard 

methodology introduces a couple of limitations. The number 

of projections in conventional CBCT is high and introduces 

a considerable radiation dose to the patient. In particular for 

the repetitive use of CBCT in an image-guided procedure as 

well as for daily pretreatment patient alignment in 

radiotherapy, the accumulated radiation dose has become a 

concern [2] and dose reduction is always an important topic 

both for health care providers and patients. Another 

limitation regarding the circular trajectory is that rotation is 

limited around the patient cranio-caudal axis which 

sacrifices the information to be achieved from oblique 

viewing angles. Some studies tried to address this by 

employing non-conventional trajectories. In [3], the authors 

examined the integration of prior 3D imaging data for 
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developing customized trajectories using a greedy approach 

as the trajectory optimization method. Non-circular 

trajectories are proposed in [4] using B-spline and periodic 

base functions in simulation experiments as well as in the 

neuroradiology [5]. Their proposed task-driven trajectories 

[3-5] could increase the reconstruction performance for a 

variety of imaging tasks. Another limitation of a circular 

trajectory corresponds to its wide angular range.  Repetitive 

intraoperative 3D scans are needed in the operating theater 

and complex interventions often require multiple complete 

C-arm gantry rotations around the patient. In this case, the 

wide angular range needed for a circular trajectory can be 

problematic due to the geometric constraints related to the 

imaging device, patient positioning table and operation 

room. Robotic surgery is another example in which there is a 

possibility of collision between the robot mounted on the 

table and the imaging machine. In these cases, CBCT 

reconstruction from a limited-angle view data is of potential 

advantage [6-8]. One important feature of interventional 

radiology and radiotherapy is that the region of interest 

(ROI) is known from high-resolution pre-treatment imaging. 

Thus, prior knowledge of patient anatomy and the ROI is 

available. The aim of this study is to incorporate such prior 

information into a customized CBCT trajectory by finding a 

source-detector trajectory with optimal orientation and 

minimal projection number in order to sufficiently image the 

ROI. For this aim we take advantage of unconventional 

imaging angles by incorporating partial rotations in 3D 

space. The resulting trajectory can minimize the radiation 

dose and is suitable for limited angle CBCT reconstruction. 
We developed a new feature for the open source 

Tomographic Iterative GPU-based Reconstruction (TIGRE) 

toolkit [9] to enable reconstruction based on arbitrary 3D 

source-detector trajectories. 

II. MATERIALS AND METHODS 

A. Workflow of the customized CBCT 

The suggested custom-designed CBCT imaging 

workflow is showed in Fig. 1. In this study, a patient-specific 

model from prior CT is acquired and used as the digital 

phantom for the trajectory simulations.  In the simulation 

phase, a set of possible x-ray source-detector trajectories are 

defined regarding the mechanical constraints of the imaging 

device. Then, synthetic 2D projections corresponding to each 

trajectory are generated from the CT-based digital phantom 

and a 3D image is reconstructed based on those simulated 

projections. Afterwards, an optimized trajectory is selected 

among the simulated trajectories (Section. C). Finally, the 

selected trajectory is applied on the C-arm device in the real 
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situation to acquire real projections in order to perform 

reconstruction. 

 
Figure 1.  Diagram of the workflow for our proposed customized CBCT. 

 

The proposed CBCT workflow was evaluated using a head 
Alderson-Rando phantom. We used the neck (C1/C2 region 
of the cervical spine) as an anatomical target for the 
experiments. 

B. Imaging device 

      A Philips Allura FD20 Xper C-arm is used in this study. 

Source-detector and source-axis distances for the Philips C-

arm are 1195 mm and 810 mm, respectively.  The detector 

size is 26 x 38 cm with 0.776 mm pixel pitch. This C-arm is 

able to rotate by angle θ1 towards Right Anterior Oblique 

(RAO)/Left Anterior Oblique (LAO) while having an 

oblique ψ in Cranial (CRA)/Caudal (CAU) direction. It is 

also able to rotate by angle θ2 toward CRA /CAU direction 

and have an oblique φ in RAO/LAO direction. 

C. Trajectory optimization method 

In this study, we use a greedy approach similar to [3] to 

propose a two-level optimization method in order to 

investigate the optimal trajectory for a specific target. The 

optimization algorithm tries to find the best combination of 

two small arcs with optimized orientation in 3D space. In the 

first level of optimization, the best arc is selected among a 

group of pre-defined arcs by maximizing an objective 

function value. In the second level of optimization, the 

second best arc is selected among the same group of pre-

defined arcs but in the way that its combination with the first 

arc leads to the maximum objective function value. The 

objective function is a measure of the reconstructed image 

quality which is calculated at the ROI of the image 

reconstructed from the simulated projections. The final 

optimized trajectory includes two arcs and offers the best 

image quality for the reconstructed image in the ROI among 

all pre-defined trajectories. For this aim, we define 237 small 

arcs (112 RAO/LAO arcs with CRA/CAU oblique +125 

CRA/CAU arcs with RAO/LAO oblique) in total which are 

possible on the device geometry. Each small arc includes 

between 30 to 40 projections (in dependence on the table 

collision constraints) by sampling every other degree, 

resulting in an angular range between 60o-80o. All pre-

defined arcs are represented in Fig. 2 with different colors. 

 
Figure 2. Pre-defined arcs for the trajectory optimization algorithm. The 
black dashed curve indicates the standard C-arm circular trajectory. 

C.1. Projection simulations 

In order to simulate CBCT data, synthetic projections are 

generated from the CT image of the head phantom. No 

additional noise was added to the simulated projections, as 

the CT scans are inherently noisy. System geometry is set to 

a source-detector distance of 1195 mm and a source-axis 

distance of 810 mm, approximating the geometry of the 

Philips C-arm. In addition, all simulated projections include 

512 x 512 pixels and a 26 x 38 cm2 detector size with 0.776 

mm pixel pitch according to the real device detector 

specifications.  

C.2. Modification of the TIGRE toolbox for unconventional 

3D source-detector trajectories 

     One of the important achievement of our work is the 

modification of TIGRE toolbox to enable forward and 

backward projections and reconstruction based on 

unconventional trajectories with arbitrary 3D orientations. 
We enabled the TIGRE toolkit to perform reconstruction 

based on variety of non-isocentric/ arbitrary trajectories and 

presented our results at a recent conference [10]. We 

calculated the matrix 𝑅 for z-y-z convention for Euler angles 

by multiplication of three intrinsic rotations as follows:  

𝑧. 𝑦′. 𝑧′′,                                                                                       

[    

𝑐𝑦′𝑐𝑧′′ − 𝑠𝑧𝑠𝑧′′          − 𝑐𝑧′′𝑠𝑧 − 𝑐𝑧𝑐𝑦′𝑠𝑧′′         𝑐𝑧𝑠𝑦′  

𝑐𝑧𝑠𝑧′′ + 𝑐𝑦′𝑐𝑧′′𝑠𝑧          𝑐𝑧𝑐𝑧′′−𝑐𝑦′𝑠𝑧𝑠𝑧′′            𝑠𝑧𝑠𝑦′  
−𝑐𝑧′′𝑠𝑦′                          𝑠𝑦′𝑠𝑧′′                           𝑐𝑦′    

] = 𝑅     (1)                      

where 𝑐 and 𝑠 are 𝑐𝑜𝑠 and 𝑠𝑖𝑛, respectively. And successive 

orientations are denoted as follows: 𝑥/𝑦/𝑧 (initial), 𝑥′/𝑦′/𝑧′ 

(after first rotation) and 𝑥′′/𝑦′′/𝑧′′(after second rotation). 

The resulting code is released freely available at 

https://github.com/CERN/TIGRE/releases/tag/v1.3. 

C.3. Objective function 

     For the trajectory optimization procedure, we used 

Structural SIMilarity Index (SSIM) as the objective function 

to evaluate the performance of the reconstruction image 

obtained from the simulated projections. The SSIM tries to 

quantify the structural similarity of two images 𝑠 and 𝑟 

based on luminance, contrast as well as structure [11]: 

 

SSIM(𝑠, 𝑟) =
(2𝜇𝑠𝜇𝑟+𝑇1)(2𝑐𝑜𝑣(𝑠,𝑟) +𝑇2)

(𝜇𝑠
2+𝜇𝑟

2+𝑇1)(𝜎𝑠
2+𝜎𝑟

2+𝑇2)
,                                  (2)                                            

where 𝜇𝑠,𝑟, 𝜎𝑠,𝑟 and 𝑐𝑜𝑣(𝑠, 𝑟) correspond to the respective 

mean, variance and covariance values of the images. The 
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variables 𝑇𝑖  include the dynamical range of the pixel values. 

The SSIM is comparing the reconstructed CBCT image 

obtained from the simulated projections and the prior 

knowledge CT. The image quality metric is calculated 

between both images after cropping them to contain the neck 

target (44×48×52 subset of voxels). A higher value of SSIM 

closer to 1 shows higher similarity between images. 

C.4. Image reconstruction 

      We modified the codes related to the forward and 

backward projectors in TIGRE to include complex rotations 

therefore enabling iterative reconstruction algorithms with 

non-standard trajectories (Section C.2). Afterward, we used 

Adaptive steepest descent projection onto convex sets (ASD-

POCS) algorithm implemented in TIGRE for the 

reconstruction based on both simulated and the real data. 

ASD-POCS was selected as reconstruction algorithm for this 

study due to its well-known robustness at low angular 

limited range sampling scanning trajectories [12]. In-house 

experiments also confirmed this. A 2563 voxel volume (with 

1 mm3 voxels) was reconstructed for all experiments. 

D. Real data image quality evaluation 

     In order to evaluate the image quality of the reconstructed 

ROI based on the real data, the following two metrics are 

used in our study: 

1) Universal Quality Image (UQI) [13] which is defined as 

follows: 

UQI =
2𝑐𝑜𝑣(𝑠,𝑟) 

𝜎𝑠
2+𝜎𝑟

2 .
2𝜇𝑠𝜇𝑟

𝜇𝑠
2+𝜇𝑟

2                                                     (3)                                                           

where 𝜇𝑠,𝑟, 𝜎𝑠,𝑟 and 𝑐𝑜𝑣 correspond to the mean, variance 

and covariance of the images. The UQI value is between 0 

and 1 and increases with similarity. 

2) Feature SIMilarity Index (FSIM) [14] which tries to 

calculate the distortion of important low level features. It is 

calculated based on phase congruency (PC) and gradient 

magnitude (GM) maps between two images 𝑠 and 𝑟. Their 

similarity (SPC, SGM), 

 

𝑆𝑃𝐶(𝑠, 𝑟) =
2𝑃𝐶𝑟∙𝑃𝐶𝑠+𝑇𝑃𝐶

𝑃𝐶𝑟
2+𝑃𝐶𝑠

2+𝑇𝑃𝐶
                                                    (4)                                                          

𝑆𝐺𝑀(𝑠, 𝑟) =
2𝐺𝑀𝑟∙𝐺𝑀𝑠+𝑇𝐺𝑀

𝐺𝑀𝑟
2+𝐺𝑀𝑠

2+𝑇𝐺𝑀
                                                 (5) 

is calculated followed by their combination by using the PC 

as a weighting function: 

 

FSIM=
∑ 𝑆(SPC,SGM)∙PC𝑚(𝑠,𝑟)𝑠,𝑟∈𝛺

∑ PC𝑚(𝑠,𝑟)𝑠,𝑟∈𝛺
,                                          (6)                                                                          

where 𝑇𝑃𝐶  and 𝑇𝐺𝑀 are values which are computed 

depending on the dynamic range of PC and GM. 

PC𝑚(𝑠, 𝑟) = max[PC(𝑠),PC(𝑟)] and 𝛺 relates to the whole 

image spatial domain. FSIM has a value between 0 and 1 

which increases with similarity. 

III. RESULTS 

The optimized trajectory is investigated in the simulations 

using a CT scan of the head phantom. After performing the 

trajectory optimization, the optimized trajectory for the neck 

target was selected. In order to demonstrate the importance 

of the correct orientation, we compared the CBCT images 

reconstructed from the optimized trajectory with a sample 

non-optimized trajectory. The non-optimized trajectory was 

selected in the way to have a low value for the objective 

function in the ROI. The number of projections for the non-

optimized trajectory was also selected to be the same as for 

the optimized trajectory in order to make the non-optimized 

trajectory comparable with the optimized trajectory. We 

realized the trajectories in the real situation with step-and-

shoot protocol by placing the C-arm to each projection view. 

A standard circular CBCT scan from the C-arm device 

provided the ground truth for our experiments (Figs 3, 4 a). 

The C-arm CBCT scan included 313 projections and 

acquired over a 210° rotation and was reconstructed at a 

voxel size of 1 mm3. The total number of projections and 

angulation selected for the optimized and non-optimized 

trajectories are given in Table I. The signs (+) and (-) denote 

rotation to the left/cranial and right/caudal directions, 

respectively. Reconstruction results for the optimized and 

non-optimized trajectories based on both real data and 

simulation data are shown in Figs. 3 (b, c) and 4 (b, c) 

respectively.  Based on the results, the optimized trajectory 

shows very good visualization of the neck target. By 

contrast, images reconstructed from the non-optimized 

trajectory reveals poor visualization in ROI specially in the 

areas indicated by the red arrows. 3D visualization of the 

optimized and non-optimized trajectories compared to the 

circular trajectory is given in Fig. 5. For each of UQI and 

FSIM, the metric value between the C-arm CBCT and the 

reference CT from the head phantom was calculated and was 

called Reference. Furthermore, it was also computed 

between CBCT from optimized/non-optimized trajectories 

and the reference CT and was called Measured. Finally, we 

calculated the relative deviation between the Reference and 

Measured (Table II). According to the results, the relative 

deviation less than 10.31% for both metrics was achieved for 

the reconstructed image related to optimized trajectory while 

relative deviation for the non-optimized trajectory was found 

to be up to 48.31%. Our results demonstrate that the 

optimized trajectory has the potential to achieve a 

comparable image quality with respect to the reference C-

arm CBCT for a given ROI while using a quarter of 

projections. The lower number of projections makes our 

optimized trajectory appropriate for low-dose CBCT 

interventions. In addition, compared to the C-arm circular 

CBCT with 210°angular range, our optimized trajectory uses 

a limited-angle view data with 156° angular rang which is 

54° less than the C-arm CBCT. 

TABLE I.  THE SELECTED ANGULATIONS AND TOTAL PROJECTION 

NUMBER FOR BOTH OPTIMIZED AND NON-OPTIMIZED TRAJECTORIES  

Trajectory Arc Angle Projection 

number 

per arc 

Total 

projection 

number 

Opt. Arc 1 θ1= +22:2:+90, ψ= +1 35 78 

Arc 2 θ2= -45:2:+39, φ= -30 43 

Non-opt. Arc 1 θ1= -67:2:+7, ψ= -29 38 78 

Arc 2 θ2= -26:2:+52, φ= -22 40 

Opt.=Optimized, Non-opt.=Non-optimized 
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Figure 3. Reconstruction results for the neck target related to a) C-arm 
CBCT, b) optimized trajectory based on the real data, c) optimized trajectory 
based on the simulation data. 

 

Figure 4. Reconstruction results for the neck target related to a) C-arm 
CBCT, b) non-optimized trajectory based on the real data, c) non-optimized 

trajectory based on the simulation data. 
 

 

Figure 5. 3D visualization of the optimized/non-optimized trajectories with 

respect to the circular trajectory.  

TABLE II.  VALUES OF IMAGE QUALITY MEASURES UQI AND FSIM 

AND THEIR RELATIVE DEVIATION 

Image 

quality 

metric 

Trajectory Measured Reference 

Relative 

deviation 

(%) 

UQI 
Opt. 0.70 0.79 10.31 

Non-opt. 0.41 0.79 48.31 

FSIM 
Opt. 0.74 0.80 7.54 

Non-opt. 0.60 0.80 25.41 

IV. CONCLUSION 

Within a realistic clinical scenario we demonstrated that 

applying a short-scan trajectory with a minimal set of 

projections and optimized orientations in 3D space is 

sufficient to localize the target and has a potential for low-

dose CBCT-based interventions. In addition, our proposed 

optimized trajectory is a good suit for the limited angle 

CBCT reconstruction. 
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