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Abstract—Neonatal seizures after birth may contribute to 

brain injury after an hypoxic-ischemic (HI) event, impaired 

brain development and a later life risk for epilepsy. Despite 

neural immaturity, seizures can also occur in preterm infants. 

However, surprisingly little is known about their evolution 

after an HI insult or patterns of expression. An improved 

understanding of preterm seizures will help facilitate diagnosis 

and prognosis and the implementation of treatments. This 

requires improved detection of seizures, including 

electrographic seizures. We have established a stable preterm 

fetal sheep model of HI that results in different types of post-HI 

seizures. These including the expression of epileptiform 

transients during the latent phase (0-6 h) of cerebral energy 

recovery, and bursts of high amplitude stereotypic evolving 

seizures (HAS) during the secondary phase of cerebral energy 

failure (~6-72 h).  We have previously developed successful 

automated machine-learning strategies for accurate 

identification and quantification of the evolving micro-scale 

EEG patterns (e.g. gamma spikes and sharp waves), during the 

latent phase.  

The current paper introduces, for the first time, a real-time 

approach that employs a 15-layer deep convolutional neural 

network (CNN) classifier, directly fed with the raw EEG time-

series, to identify HAS in the 1024Hz and 256Hz down-sampled 

data in our preterm fetuses post-HI. The classifier was trained 

and tested using EEG segments during ~6 to 48 hours post-HI 

recordings. The classifier accurately identified HAS with 

98.52% accuracy in the 1024Hz and 97.78% in the 256Hz data.  

Clinical relevance—Results highlight the promising ability of 

the proposed CNN classifier for accurate identification of HI 

related seizures in the neonatal preterm brain, if further 

applied to the current 256Hz clinical recordings, in real-world. 

I. INTRODUCTION 

Perinatal complications of a difficult labor can cause 

oxygen deprivation leading to hypoxia-ischemic 

encephalopathy (HIE), at birth. A severe HIE insult evolves 

over time from early post-HI recovery over hours, days and 
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weeks post-insult, causing significant grey and white matter 

injury [1]. A latent phase of recovery of cerebral oxidative 

metabolism is followed by a secondary loss of metabolism 

[1]. We have shown in our experimental chronically 

instrumented preterm fetal sheep model that micro-scale 

EEG events, such as sharp waves, evolve during the latent 

phase and are predictive of neural outcome (Figure 1) [1-4]. 

The secondary phase is often characterized by the 

appearance of high-amplitude stereotypic evolving seizures 

(HAS) (see Figure 1) [5, 6]. Clinical studies have shown that 

seizures can occur after preterm birth, although many may 

be subclinical [7], and under some conditions may play a 

role in causing or exacerbating brain injury, impairing 

neurodevelopment and may contribute to later life risk of 

epilepsy [8-11]. Currently, however, the data about preterm 

seizures are surprisingly limited and it is increasingly 

recognized that here is a need to improve detection of and 

characterization of seizure patterns in preterms to improve 

our understanding about when they occur, their contribution 

to injury and for the development of treatments [10-12]. 

Reliable automated analysis of EEG activity will assist in 

clearly identifying preterm seizure activity. We have 

previously developed successful automated machine-

learning strategies for the accurate identification of latent-

phase micro-scale events, such as spike transients [2, 13-15], 

sharp waves [4, 16-19] as well as stereotypic evolving 

micro-scale seizures (SEMS); which are rolling waveforms 

in delta band [20], in the EEG of preterm fetal sheep after 

HI. We have also recently developed an accurate 17-layer 

deep 2D-CNN sharp wave classifier that uses wavelet 

scalograms of the ECoG segments to extract robust feature 

maps over a wide spectral-range (WS-CNN classifier) [18].  

This paper, for the first time, introduces an accurate real-

time approach that uses a deep one-dimensional 

convolutional neural network (CNN) seizure classifier in 

preterm sheep HI data. This has been used to identify high-

amplitude stereotypic seizures in EEG 1024Hz and 256Hz 

down-sampled EEG data in preterm fetal sheep post-HI. The 

paper describes how the raw EEG segments from more than 

81 hours of post-HI recordings can be used to robustly train 

a 15-layer deep 1D-CNN classifier to accurately identify 

HAS from background activity and high-amplitude noise. 

II. METHODS 

A. Data collection  

The animal studies and procedures in this paper were 

approved by the Animal Ethics Committee of the University 

of Auckland, under the Animal Welfare Act (1999) of New  
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Figure 1.  (A): Post HI-insult EEG power activity containing high-

amplitude stereotypic seizures from asphyxicated preterm fetal sheep. 
(B-C): Examples of the HAS in the training and test sets of sheep #1 & #2. 

Zealand. Two fetal sheep were studied for this paper at 0.7 

of gestation; fetuses at this age have brain maturation 

equivalent to a preterm human brain of around 27-30 weeks 

of gestation [21]. The animal management and surgical 

procedures have been described previously [5]. Briefly, 

under anesthesia we instrumented the fetus with arterial 

catheters post-surgical monitoring of fetal cardiovascular 

function and for blood sampling, as well as placement of a 

silicone occluder around the umbilical cord to induce an 

acute HI insult. For EEG recordings, electrodes made in-

house using Cooner Wire (Cooner Wire, Chatsworth, CA, 

USA), were placed on the dura of the fetal parasagittal 

cortex and covered and secured in place. A reference 

electrode was placed over the occiput [5]. Technically, this 

placement provides an electrocorticogram recording 

(ECoG), and the direct placement on the cortex provides a 

clear signal from which useful signal components (e.g. 

gamma band spectrums) can be derived [22]. From here, we 

refer to ECoG for the signal.  

Following instrumentation, fetuses are returned to the 

uterus, and ewes and fetuses given 4-5 days to recovery. 

Fetuses then underwent an acute HI insult of 25 min of 

complete umbilical cord occlusion titrated by cardiovascular 

and blood gas variables as previously described [5]. ECoG 

data were recorded continuously pre and post-HI from both 

left and right hemispheres of the brain. We collected over 81 

hours of ECoG data. The entire bursts of high-amplitude 

epileptiform seizures within the 81 hours recordings were 

manually labelled and used in the analysis. We used 66 

hours of post-HI data from fetal sheep #1 to train and 

validate the classifier and 15 hours of post-HI recordings 

from fetal sheep #2 was used to test the net. 

B. High-Amplitude Stereotypic Epileptiform Seizures  

HAS in preterm and full-term neonates are defined as 

repetitive electrographic EEG waveforms with a rhythmic 

and stereotypic evolving nature [23]. HAS events with 

similar characteristics on ECoG recordings have been 

reported by us in previous fetal sheep experiments (see 

Figure 1, B-C) [5, 6]. HAS have been classified as ongoing 

bursts of very high amplitude EEG patterns that last for a 

minimum of 10 seconds that emerge in varying large 

amplitudes as the injury evolves [5, 6]. For consistency with 

clinical definitions as well as our previous studies, similar 

criteria were used to annotate the data. 

B. Pre-processing  

 The original fetal ECoG recordings were initially low-

pass filtered using a 6th order anti-aliasing Butterworth filter.  

Data were also high-pass filtered using a first-order filter 

with 1.6Hz and 512Hz cut-off frequencies and digitized at a 

1024Hz sampling frequency rate. Data were then amplified 

(×10,000 gain) and finally extracted into Matlab for seizure 

analysis. Data were initially normalized and zero-meaned 

and ECoG segments of 4 minutes length were selected from 

the 1024Hz raw ECoG signals to shape input vectors. The 

chosen input size of the ECoG segments assures that the 

input data covers HAS with longer lengths. Data were also 

down-sampled by a factor of 4 to generate the 256Hz 

datasets. ECoG segments were directly fed into a 15-layers 

deep one dimensional (1D) convolutional network (CNN) 

for training, validation, and testing. For the 1024Hz data, 

ECoG time series of length 245760 ×1 samples (4 min) were 

chosen to create the training/validation set. The length of 

ECoG segments in the 256Hz down-sampled data was 

reduced to 61440 samples. To generalize the validity of the 

classifier and fortify outcomes, the original data were not 

further de-noised. This facilitates with the training of the 

classifier using a more challenging data that is closer to 

near-real situations. Data were labeled manually by an 

expert (HA). The deep 1D-CNN classifier was trained, 

validated, and tested using a total of 747 ECoG segments, 

including 83 intervals containing HAS and 664 non-HAS 

epochs. The algorithm was developed, trained, and tested in 

Matlab® on a single workstation computer: Intel® Core™ 

i7-7700 CPU 3.60GHz, 4 cores processor with 16GB RAM.  

C. The proposed deep 1D-CNN classifier 

Convolutional neural networks are the enhanced deep-

learning structures with demonstrated ability in signal and 

image processing [24]. Due to their proven capability, CNNs 

have been recently applied to clinical data for neonatal 

seizure recognition in multi-channel EEG recordings [25, 

26]. Following our successful use of WS-CNN [18], and 

because of the strong capability of the convolutional 

classifiers, this study introduces, for the first time, a one-

dimensional CNN architecture for the identification of HAS 



  

in post-HI ECoG. This was initially done by by-passing the 

WS generating block of our previous WS-CNN pattern 

classifier in [18] and feeding the 1D-CNN directly with the 

raw ECoG segments in the form of one-dimensional time-

series. The 1D-CNN takes the input time-series (245760×1), 

and produces internal feature-maps for classification. A total 

of six convolutional (with rectified linear activation units 

(ReLU) after each convolutional layer), six max-pool and 

three fully connected layers (total of 15 layers), and a final 

softmax and classification layer were used for final 

reasoning. The architecture of the proposed 1D-CNN 

classifier is detailed in Table I. Figure 2 also represents a 

graphical demonstration of the proposed approach. 

Here, we used a stochastic gradient descent with momentum 

(SGDM) strategy to update the weights and bias parameters. 

Learning rate, 𝛼, and momentum, 𝛾, parameters were 

initially set to 0.01 and 0.9, respectively, to minimize the 

loss function. Due to the satisfactory high-performances, the 

parameters (𝛼 and 𝛾) were not further tuned. 66 hours of 

post-HI recordings from the 1st fetal sheep (sheep #1), with a 

random data distribution of 80% and 20%, were used for 

training and initial validation of the classifier, respectively. 

Sheep #1 was selected for training due to possessing a 

higher number of HAS. 15 hours of data from the 2nd fetal 

sheep (#2) were then used to test the classifier on an unseen 

dataset. The classifier was trained over a total of 50 epochs. 

The original 1024Hz data was also down-sampled to 256Hz 

to assess the performance ability of the 1D-CNN approach in 

near-clinical situations. 

TABLE I.  THE ARCITUCHURE OF THE PROPOSED 1D-CNN CLASSIFIER 

Layers Type 

No. of  

Neurons 

(Output) 

Kernel 

size 
Stride 

No. of 

Filters 

0-1 Conv. 241665×1 [4096 1] 1 
4 

1-2 Max_pool 120832×1 [3 1] 2 

2-3 Conv. 118785×1 [2048 1] 1 
6 

3-4 Max_pool 29696×1 [5 1] 4 

4-5 Conv. 28673×1 [1024 1] 1 
8 

5-6 Max_pool 7168×1 [5 1] 4 

6-7 Conv. 6657×1 [512 1] 1 
10 

7-8 Max_pool 1664×1 [5 1] 4 

8-9 Conv. 1153×1 [512 1] 1 
18 

9-10 Max_pool 288×1 [5 1] 4 

10-11 Conv. 33×1 [256 1] 1 
24 

11-12 Max_pool 8×1 [5 1] 4 

12-15 Fully_connected 384    

 Fully_connected 10    

 Fully_connected 2    

III. RESULTS 

Results of the confusion matrices using the proposed 

15layers deep 1D-CNN classifier are represented in Table II. 

The deep-trained 1D-CNN precisely identified bursts of 

high-amplitude stereotypic seizures in 1024Hz sampled 

ECoG with 98.52% overall accuracy (AUC: 0.977). The 

accuracy of the classifier was also high, with only a 

negligible drop within the margin of error, at 97.78% for the 

256Hz down-sampled data (AUC: 0.929). Figure 3 

illustrates the ROC plots of the proposed classifier for both 

1024Hz and 256HZ data. Results indicate that the 1D-CNN 

classifier can robustly identify ECoG segments that include 

high-amplitude seizures from ECoG background activity and 

noise, both in the high-resolution 1024Hz ECoG and 256Hz 

down-sampled data. The proposed 1D-CNN classifier, 

which compared to our WS-CNN method [18] uses a 

computationally-lighter strategy, was able to classify HAS 

from non-HAS epochs with 100% accuracy at the training 

and validation levels for both 1024Hz and 256Hz data. 

Computation-wise, the algorithms ran much faster when the 

deep 1D-CNN classifier was applied to the 256Hz down-

sampled data; therefore, the negligible 0.74% lower 

performance from the 256Hz dataset (that falls well within 

the margin of error) can be compromised for speed. The 

minimal number of missed (False Negative) and wrong 

(False Positive) detections at the test level (unseen data) 

further confirms the capability of the proposed deep CNN 

classifier in building robust feature maps for reliable 

identification of seizure, if further applied to the current 

256Hz clinical recordings, in real-world. 

IV. CONCLUSION 

This paper, for the first time, introduced an accurate real-

time 15-layers deep CNN classifier, directly fed with the raw 

HI ECoG time-series, to identify high-amplitude stereotypic 

epileptiform seizures in 1024Hz and 256Hz down-sampled 

data from preterm fetal sheep obtained in utero. The work 

has impact by demonstrating the promising possibility to 

accurately identify ECoG segments containing bursts of 

high-amplitude seizures from background activity and large-

amplitude noise, in the post-HI recordings. The proposed 

1D-CNN classifier was able to reliably identify ECoG 

segments containing high-amplitude seizures with 

considerably high-accuracies of 98.52% and 97.78% for the 

1024Hz and 256Hz down-sampled data, respectively, tested 

over more than 81 hours of experimental data. The validity 

of these preliminary results should be further investigated in  

                            
 

 

 

 

            Raw ECoG segment - length: 4 minute                                                1D Convolutional classifier        

           (1024Hz or 256Hz down-sampled data)                                                           15-layers deep                         Final classification 

Figure 2.  The schematic of our proposed 1D-CNN classifier. 



  

 

Figure 3.  ROCs and the corresponding AUCs for the 15-layers 1D-CNN 

High-Amplitude Stereotypic Seizure detector in 1024Hz & 256Hz data 

TABLE II.  PERFORMANCE MEASURES OF THE 1D-CNN CLASSIFIER ON 

1024HZ AND 256HZ DOWN-SAMPLED DATA 
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a more detailed study using other deep-learning structures 

(e.g. with shallower depth) on a bigger dataset. Further, due 

to working with one-dimensional inputs, the developed 

algorithm is computationally less-expensive compared to our 

previous WS-CNN classifier. This an important step forward 

towards the real-time identification and quantification of 

EEG seizures in the current experimental and clinical 

recordings that are generally sampled at lower frequency 

rate of 256Hz. 
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