
  

  

Abstract — Machine learning and more recently deep learning 

have become valuable tools in clinical decision making for 

neonatal seizure detection. This work proposes a deep neural 

network architecture which is capable of extracting information 

from long segments of EEG. Residual connections as well as data 

augmentation and a more robust optimizer are efficiently 

exploited to train a deeper architecture with an increased 

receptive field and longer EEG input. The proposed system is 

tested on a large clinical dataset of 4,570 hours of duration and 

benchmarked on a publicly available Helsinki dataset of 112 

hours duration.  The performance has improved from an AUC 

of 95.41% to an AUC of 97.73% when compared to a deep 

learning baseline.  

 
Clinical Relevance — This research presents an improvement 

in performance over state-of-art neonatal seizure detection 

algorithms. 

I. INTRODUCTION 

Neonatal seizure detection is a challenging task for 
clinicians as many neonates do not display any physiological 
indicators during seizure events [1]. The only way to detect all 
seizure events is to examine neonatal brainwaves – EEG. 
Interpretation of neonatal EEG (Fig. 1) is a challenging task, 
seizure events can be short and focal while multiple seizure-
like artifacts are present during continuous EEG monitoring. 
Detection of seizures in neonatal EEG requires years of 
clinical training and this expertise is not available 24/7 in 
intensive care units. Machine learning techniques have been 
developed to automatically monitor EEG signal and trigger an 
alarm when a seizure is detected. Such automatic decision 
support tools can aid clinicians in detecting seizures [2], [3]. 
To achieve this, the EEG signal is usually characterised with a 
number of hand-engineered features which are pooled together 
by a classifier to make inferences [2], [4]. More recently deep 
learning based seizure detection algorithms have improved the 
algorithmic performance [5-9]. Deep learning methods exploit 
increasing amounts of data to learn signal representation 
patterns directly from raw EEG in an end-to-end optimisation 
paradigm without making assumptions about the signal.  

A fully convolutional architecture for neonatal seizure 
detection was developed in [8]. The authors utilised an 8 
second window of multichannel EEG as an input to the model 
thus removing the need for explicit feature extraction. The 
predictions of the model were smoothed to output a probability 
of seizure for every minute-long window. While the state-of-
the-art results in detecting seizure events were achieved with 
this architecture, the postprocessing steps were still outside of 
the deep learning optimisation routine. Moreover, it was 
shown that increasing the input length and the receptive field 
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by making an architecture deeper with more feature extraction 
blocks did not further improve the performance.  

This study advances towards incorporating the 
postprocessing steps into the end-to-end optimisation by 
making the model operate on longer EEG segments. 
Resnet/skip connections [10] are incorporated into the 
previously developed system. Together with the proposed data 
augmentation and a more robust optimizer this allows for the 
increase of the input window to 16s and thus improve the 
performance.  

II. MATERIALS AND METHODS 

A.   Baseline model  

A fully convolutional neural network is used as a baseline 
in this study [2], [11]. This architecture is shown in Fig. 2. The 
system takes an 8s window of 256 Hz multichannel EEG as 
input, down-samples it to 32 Hz using a band-pass filter of 
between 0.5Hz and 12.8Hz, transforms it through 3 feature 
extraction blocks, followed by a fully convolutional 
classification block. The use of a stacked convolutional layers 
with small sample-sized filters (3-sample wide) is similar to 
the VGG architecture, which was developed for image 
processing applications [12]. A one second shift is used 
between consecutive 8s window inputs. 

Though the input to the model is two-dimensional, with 
stacked channels of temporal EEG, all convolutional and 
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Figure 1. A segment of 80s of multichannel neonatal EEG with a 

seizure. Source: Adapted from [8]. 
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pooling operations are applied along the temporal dimension. 
The trained model is agnostic to the number of input EEG 
channels and to the location of the seizures. The classification 
block consists of a convolutional layer with two feature maps, 
representing seizure and non-seizure, followed by global 
average pooling operation across time and global maximum 
pooling across channels, to summarise the presence of seizure 
activity in the given 8s segment, in any of the input EEG 
channels.  

Three postprocessing steps reduce the number of false 
alarms as developed in [13]. First a moving average filter of 
~ 1 minute duration is applied, followed by a per patient 
adjustment for the level of background EEG by averaging the 
previous ~ 10 minutes of non-seizure EEG, finally detected 
seizures are extended on both sides by 30 seconds [13]. 

B. The proposed approach with residual connections 

The architecture of the proposed approach is shown in 
Fig. 3. The input to the model is a 16s window of multichannel 
EEG. The main difference with the baseline is the integration 
of residual connections into the architecture. These skip 
connections allow each stack of 3 convolutional layers to learn 
a residual mapping – the difference between the desired 
underlying mapping for the stack and the input to the stack 
[10]. The residual functions enable the whole network to learn 

more efficiently with only a marginal increase in 
computational cost and no increase in the number of network 
parameters. Thus, a deeper model with an extra feature 
extraction block (13 convolutional layers in total) is trained. 

Data augmentation was utilised where amplitude rescaling 
was dynamically applied during training; the EEG signal was 
transformed at random by one of four transformations with 
equal probability. These four transformations were a vertical 
flip, increase the signal amplitude by a random number 
between 0.5 and 1.5, a combination of the previous 2 
transformations, or no alteration.  

A Rectified Adam (RAdam) optimizer [14] was used in 
training for the proposed model, compared to stochastic 
gradient descent in the baseline. RAdam adjusts the variance 
of the adaptive learning rate [14]. 

The inference stage of the proposed model includes the 
same smoothing filters but of shorter length since the 
probabilistic outputs are obtained for 16s windows rather than 
8s windows in the baseline.  

C.  Datasets 

The dataset used for training consists of EEG recordings 
taken at the Neonatal Intensive Care Unit of Cork University 
Hospital of 72 neonates. Eighteen of these neonates 
experienced seizures from hypoxic ischemic encephalopathy 
brain injury. The training dataset totals 835 hours of 
multichannel EEG recordings, with a total of 77.7 hours of 
annotated seizure activity from 1,389 seizure events. Eight 
channels of EEG were recorded at 256Hz. The 10-20 EEG 
placement system modified for neonates was used with the 
following bipolar montage F4-C4, C4-O2, F3-C3, C3-O1, T4-
C4, C4-Cz, Cz-C3, C3-T3. One hour of background activity 
was included from each of the remaining non-seizure patients. 
The total length of the training dataset was of 889 hours. The 
same dataset was also used in [3], [8], [11], [13] and for the 
baseline system. This study had full ethical approval from the 
Clinical Research Ethics Committee of the Cork Teaching 
Hospitals. 

Two datasets are used to test the performance. One dataset 
of continuous multichannel EEG consists of data from 78 
neonates with 23 experiencing seizure events. This clinical 
dataset comprises 4,570 hours of unedited EEG recordings, 
with 57.7 hours of seizure activity from 1,704 seizure events. 

 

 

  
 

 
 

 

 

 

 

 

Figure 3. The baseline and the proposed models. The baseline consists of 

3 feature extraction blocks. An extra feature extraction block is added to 

the proposed model along with the residual connections.  
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Figure 2. Schematic of the baseline model. Eight seconds of raw EEG from 8 channels are preprocessed and fed into the NN model. The probabilistic 

output is postprocessed. Source: Adapted from [8]. 
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The same eight channel bipolar montage was used to record 
the data at 256Hz or 200Hz.  

A publicly available database is also used as a test dataset 
in this study [15]. This dataset consists of short 1-2h excerpts 
from 79 neonates who were admitted to the NICU of Helsinki 
University Hospital. This dataset contains a total of 112 hours 
of EEG recordings with 11 hours of seizure activity from 342 
seizure events. Eighteen channels of EEG were recorded at 
256 Hz. The dataset is further described and analysed in [4].  

D. Performance assessment 

AUC was used as the primary performance metric in this 
work. Sensitivity is the percentage of seizure epochs correctly 
labelled as seizure by the algorithm. The specificity is the 
percentage of non-seizure epochs correctly labelled as non-
seizure by the algorithm. While AUC is a commonly used 
metric to compare the performances of seizure detection 
algorithms [16] irrespective of the chosen operating point, the 
AUC90 metric which calculates the performance of an 
algorithm with Specificity>0.9, is more representative of 
clinically acceptable operating conditions with a low number 
of false alarms. This metric is also reported for comparison.  

III. RESULTS 

Table I compares the performance of the proposed model 
to the baseline model when tested on the dataset of continuous 
EEG and the Helsinki dataset. It can be seen that the proposed 
model with residual connections gives a steady and consistent 
boost in performance with respect to the baseline on both 
datasets tested. In particular, a relative improvement of 50.5% 
was obtained on the dataset of continuous EEG, where the 
AUC increased from 95.4% to 97.7%, with a similar increase 
in AUC90. On a publicly available dataset, the proposed 
method outperforms both the baseline and the SVM system 
developed in [8], with a relative improvement of over 20%. 
Fig. 4. illustrates the receiver operating characteristic (ROC) 
curves for the baseline and the proposed model which are 
obtained from the dataset of continuous EEG. The shaded 
portion of the AUC corresponds to AUC90, highlighting the 
increased performance of the proposed model in this important 
area. Fig. 5 shows per-patient increase in AUC on the patients 
with seizures from the database of continuous EEG.  

IV. DISCUSSION 

Previously developed methods of neonatal seizure 
detection have relied on clearly identifiable preprocessing, 
feature extraction, classification and postprocessing blocks [2] 

[3], [4]. The deep learning methods which employ 
convolutional filters have reduced the reliance on explicit 
feature engineering while significantly boosting the 
performance [8], [11]. More recently, architectures has been 
introduced which further reduced the reliance of the model on 
the availability of per-channel annotations, and can exploit 
available data to learn convolutional filters across time and 
EEG channels without learning patient-specific seizure 
location dependencies [8]. This method has shown a 
significant boost in generalisation abilities with respect to both 
the feature extraction based SVMs [2], [4] and the single EEG 
channel deep learning systems [8], [9], [11]. The 
postprocessing steps such as moving average smoothing filters 
were still designed and applied outside the deep learning 
methodology. One way to incorporate the postprocessing into 
the system is to learn longer convolutional filters by increasing 
the input length and the receptive field of the model. This study 
exploits an addition to the model architecture which is well-
researched in deep learning community and allows a better 
gradient flow during training to enable efficient training of 
much deeper neural networks – residual connections [10].  

When comparing the performance of deep learning 
methods, a large and diverse test corpus is required to increase 
the sensitivity of the performance to the architectural changes. 
In this work, a very large clinical dataset of continuous 
unedited EEG was utilised for testing. The corpus contains a 
large variety of artifacts naturally present in continuous 
recordings, a variety of seizure morphologies of different 
etiologies, and seizures of different lengths. This dataset can 
serve as a good representation of real-life clinical scenario 
which employs AI-assisted long term EEG monitoring in 
NICU.  

Table I. The comparison of results of the proposed model on the test 
dataset of continuous EEG and public DB from Helsinki. 

  Continuous EEG Helsinki DB [15] 

 AUC AUC90 AUC AUC90 

Helsinki SVM [8]  - - 95.5%* - 

Baseline [5] 95.4% 79.0% 95.6% 70.4% 

This study 97.7% 83.6% 96.4% 72.2% 

Relative 

improvement wrt 

Baseline 

50.5% 21.9% 21.9% 6.5% 

 

 
Figure 5. Per-patient AUC increase (absolute) of the proposed model vs. 
the baseline on the dataset of continuous EEG. 

 
Figure 4. ROC with AUC90 performance (shaded blue) of the 

proposed model (blue) and the baseline model (orange).  

* The Helsinki SVM AUC from a Leave One patient Out analysis is reported, all 

other metrics are the result of a single held-out test set analysis. 
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The results on the continuous EEG database indicate that 
with the help of residual connections, data augmentation and a 
more robust optimizer, the proposed model trained on input 
windows of 16s has improved the relative performance by over 
50%, with respect to the baseline which operates on 8s 
windows [8]. The proposed model has an increased receptive 
field of ~10s compared to the baseline model with the 
receptive field of ~5s, thus giving the proposed model the 
ability to learn longer temporal seizure characteristics. A 
neonatal seizure is often defined as an episode of abnormal 
electrographic activity with a minimum duration of ten 
seconds. 

From the differences in AUC between the proposed model 
and the baseline model over the 23 patients with seizures from 
the database of continuous EEG (Fig. 5), it can be seen that the 
designed architecture consistently improves over the majority 
of patients with an increase from an average AUC of 96.0% to 
97.8%. Interestingly, with the new model the performance has 
not decreased for a single patient.  

The AUC90 metric captures the performance which is 
more relevant in a clinical setting, since the specificity of over 
90% corresponds to a more clinically acceptable operating 
point where the number of false detections is smaller than one 
false detection per hour. Moving to a longer input with the 
proposed model, the AUC90 has similarly improved from an 
AUC of 79.0% to an AUC of 83.6%, as reflected in the shaded 
area in Fig. 4.  

Benchmarking on the publicly available dataset, the 
performance has also improved from 95.6% to 96.4%, setting 
the new highest AUC score on this dataset, to date. Though 
this dataset consists of pre-selected 1-2h segments of 
multichannel neonatal EEG, this is the only publicly available 
dataset of neonatal EEG and it is important to benchmark the 
performance of the developed methods on this dataset. 

The improvement in performance of the proposed model 
over the baseline model on this publicly available Helsinki 
dataset is not as large as that on the continuous EEG dataset 
as shown in Table I. The proposed model allows for more 
efficient training and exploitation of the training dataset 
which is long term unedited continuous EEG. These 
characteristics are better captured in the proposed model. 
While the better training procedure improves the overall 
performance on both test datasets, the mismatch in dataset 
characteristics between training and testing will inevitably 
increase the absolute difference in improvements. 

V. CONCLUSION 

The study has demonstrated that with the usage of residual 
connections, data augmentation and a robust optimizer, a 
deeper convolutional architecture can be constructed to 
operate on longer EEG input and reduce the reliance on the 
external postprocessing steps. The deeper network designed 
is capable of learning longer patterns from multichannel 
neonatal EEG through the increased receptive field. The new 
model has improved the performance of neonatal seizure 
detection on a large database of continuous EEG and a 
publicly available dataset. Future work will concentrate on 
further increasing the input length to eliminate the 
postprocessing steps altogether.  
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