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Abstract— The time interval between the peaks in the elec-
troccardiogram (ECG) and ballistocardiogram (BCG) wave-
forms, TEB, has been associated with the pre-ejection period
(PEP), which is an important marker of ventricular contrac-
tility. However, the applicability of BCG-related markers in
clinical practice is limited by the difficulty to obtain a replicable
and consistent signal on patients. In this study, we test the
feasibility of BCG measurements within a complex clinical
setting, by means of an accelerometer under the head pillow of
patients admitted to the Surgical Intensive Care Unit (SICU).
The proposed technique proved capable of capturing TEB based
on the R peaks in the ECG and the BCG in its head-to-
toe and dorso- ventral directions. TEB detection was found
to be consistent and repeatable both in healthy individuals and
SICU patients over multiple data acquisition sessions. This work
provides a promising starting point to investigate how TEB
changes may relate to the patients’ complex health conditions
and give additional clinical insight into their care needs.

I. INTRODUCTION

Electrocardiography and ballistocardiography are nonin-
vasive monitoring techniques that capture different aspects
of cardiovascular function. The electrocardiogram (ECG) is
generated by electrical changes due to the periodic depolar-
ization/repolarization of the cardiac muscle at each heartbeat.
Therefore, the ECG captures the electrical activity of the
heart and is typically measured using electrodes placed on
the skin. The ballistocardiogram (BCG) is generated by
the repetitive motion of the center of mass of the human
body as blood moves within the circulatory system at each
heartbeat [1]. The BCG captures the mechanical and fluid-
dynamical properties of the cardiovascular system as a
whole and can be measured via multiple sensing modalities,
e.g., bed sensors [2], [3], chair sensors [4], load cells [5],
electromechanical film under the mattress [6] and weighing
scales [7], [8].
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The time interval between the peaks in the ECG and
BCG waveforms (TEB) has been associated with relevant
cardiovascular markers, thereby yielding great potential for
noninvasive monitoring of cardiovascular function. For ex-
ample, TEB was found to be associated with the time
between ventricular contraction and aortic valve opening,
also known as pre-ejection period (PEP) [9]-[11]. PEP can be
obtained via echocardiography and impedance cardiography
and is considered as an index of ventricular contractility [12].

One of the main challenges in the clinical use of BCG is
the difficulty in obtaining repeatable and consistent signals
outside cohorts of healthy individuals evaluated in controlled
laboratory conditions [13]. In this study, we test the feasibil-
ity of BCG measurements on critically ill patients admitted to
the surgical intensive care unit (SICU). The ECG is acquired
via a three-lead system while the BCG is acquired via an
accelerometer placed under the head pillow. Based on [9]-
[11], we focus on TEB as a feature of clinical relevance and
we show that TEB measurements obtained with the proposed
sensing modality are consistent and repeatable both in the
case of healthy individuals and SICU patients.

II. METHODS
A. Data Acquisition

This study has been conducted in the SICU of the Univer-
sity Hospital - MU Health Care (Columbia, MO) directed by
Dr. Ahmad. The study protocol, approved by the Institutional
Review Board (IRB-2029122), did not interfere with the
position of the patient, the inclination of the SICU bed and
the regular activity of the clinical staff. This data collection
mode fits the reality of a critical care environment, such as
that of SICU, and adds value to the proposed method.

A total of 6 SICU patients and 2 healthy individuals were
recruited for the study (see Table I). Inclusion criteria for
the recruitment of SICU patients include surgical critical
illness that requires hemodynamic monitoring and active
resuscitative interventions to optimize cardiovascular perfor-
mance in the correction of oxygen debt. Exclusion criteria
include pediatric and pregnant patients and those being cared
for by a medical intensive care team. An AD Instruments
PowerLab Data Acquisition system was utilized to acquire
simultaneously signals from a three-lead ECG and a three-
axis accelerometer positioned under the head pillow (BCG



signal) at the rate of 200 samples per second. The orientation
of the three-axis accelerometer is shown in Fig. 1, with the
z, y and z axes representing the shoulder-to-shoulder, head-
to-toe and the dorso-ventral directions, respectively.

TABLE I
PARTICIPANT DETAILS

Subject Gender Age Height (cm) | Weight (kg)
1 Male 38 179 78.0
2 Male 44 162 88.4
3 Male 79 172 65.5
4 Female 33 157 60.0
5 Female 68 175 70.0
6 Female 41 157 136.0
1-H Male 26 177 89.0
2-H Male 58 174 92.0
z-axis

y-axis
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Fig. 1. Orientation of the 3-axis accelerometer positioned under the head
pillow utilized for BCG acquisition.

Healthy individuals were awake laying supine on a vacant
SICU bed. The SICU patients were sedated and mechanically
ventilated with an arterial catheter used for hemodynamic
monitoring using the Flotrac” device (Edwards Life Sci-
ences, Irvine, CA). Sensor recordings were performed while
they were immobile to avoid motion artifact. The position of
the patient on the bed as well as the inclination angle of the
head of the bed were annotated, as they may have differed
depending on the specific patient conditions (Table. I). For
each subject, data were acquired continuously for at least 2
minutes. Data acquisition was repeated for each subject at
least 3 times with intervals of approximately 10 minutes.

B. Data Processing

A 6 order Butterworth bandpass filter that performs a
zero-phase filtering was applied to the ECG signal (cutoff
frequencies: 0.7 and 40 Hz) and to the BCG signal (cut-
off frequencies: 0.7 and 20 Hz) to remove high-frequency
noise and low-frequency respiratory variations. The Signal-
to-Noise Ratio (SNR) was computed for each of the three
directions in the BCG signal as the variance of the band-
pasS signal over the variance of the high pass filtered noise.
The SNR values over all acquisition sessions and all study
participants were found to be SNR, = 1.0 £ 0.7, SNR, =
2.6 &+ 2.0, SNR, = 7.9 + 4.5. This result shows that the
head-to-toe (y) and dorso-ventral (z) directions contain the
strongest portion of the signal, which is consistent with [7].
Given that different inclinations of the SICU bed may
redistribute the BCG signal in the y and z directions in
different ways, and different inclinations may be required by
different patients depending on their conditions (see Table I),
we combine the BCG signals along the prominent axes into
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a single quantity, henceforth referred to as normed BCG
(nBCG) defined as:

nBCG = |/BCG + BCG?

where BCG, and BCG;, represent the filtered BCG signals in
the y and z directions. A 2"¢ degree polynomial regression
was used to smooth the computed nBCG signal. The R
peaks in the ECG were detected by using the standard Pan-
Tompkins algorithm [14]. As a result, for each acquisition
session we obtain a sequence of time instants t;, with
7 =1,..., N, at which R peaks occur. Next, for each time
interval (t;,t;41), with j = 1,..., N —1, the time at which
the nBCG attains its maximum is detected and denoted by 7.
Finally, the TEB for that session is defined as the sequence
TEB; = 7; — t; of the time distances between the R peaks
in the ECG and the maxima in the nBCG.

0]

ITII. RESULTS

The methodology for signal processing is illustrated on a
healthy individual (Subject 2-H) and a SICU patient (Subject
3) in Figs. 2 and 3. Fig. 2 reports a 5 second sample of
the filtered three-axis BCG signal, along with an annotation
of the time instants at which the R peaks in the ECG
occur (vertical dashed lines). The dorso-ventral signal (z)
for the healthy individual exhibits a clear periodic pattern
characterized by prominent peaks in the systolic part of the
cardiac cycle. In the case of the SICU patient, the distance
between R peaks is drastically reduced and the pattern in the
BCQG signal is more irregular.

Fig. 3 shows the nBCG signal before smoothing (black
curve) and after smoothing (blue curve) for the same subjects
and the same 5 second window considered in Fig. 2, along
with the R peak annotations (vertical dashed lines). The
maxima of the nBCG signal are also reported (red crosses)
and the TEB is computed as the time distance between each
nBCG maximum and the preceding R peak. These results
show that the proposed methodology for signal acquisition
and processing enables TEB detection for both the healthy
individual and the SICU subject.

The boxplots in Fig. 4 show the distributions of the
TEB values over 1 minute for the three sessions of data
acquisition on the same study subjects considered above
(Subject 2-H and Subject 3). The red line within each box
represents the median, whereas the upper and lower limits of
the blue-lined boxes represent the 75" and 25! percentile,
respectively. Outliers (blue circles) are identified by setting
a maximum whisker length of 1 s. The results show that
the values of the TEB medians are consistent for a given
subject and reproducible over different sessions both in the
case of a healthy individual (Subject 2-H) and a SICU patient
(Subject 3). Interestingly, the TEB distribution on the healthy
individual appears to be narrower than that of the SICU
patient, who exhibits a wider distribution and more outliers.
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Fig. 2. Three-axis filtered BCG signals for a healthy individual (Subject
2-H) and a SICU patient (Subject 3). The time locations of the R peaks in
the ECG are also annotated (vertical dashed lines).
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Fig. 3. nBCG before smooothing (black) and after smoothing (blue) for a
healthy individual (Subject 2-H) and a SICU patient (Subject 3)

So far, the data acquired on Subjects 2-H and Subject 3
have been used to illustrate the proposed methodology for
TEB detection. The results obtained for all subjects during 1
minute windows over three sessions of data acquisition are
reported in Table II. In each table cell, the 25! and 75"
percentiles are reported in italics below the median value.
Results show that the median values of TEB are consistent
for a given subject over multiple sessions. Remarkably, this
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Fig. 4. Repeatability of TEB acquisition over three sessions on a healthy
individual (Subject 2-H) and a SICU patient (Subject 3). Red lines indicate
the median values, whereas the upper and lower box limits report the
75th and 25" percentiles. Outliers (blue circles) are defined by setting
the whisker length (dashed lines) to include the maximum extension of
datapoints that are not considered outliers by the algorithm.

holds true both in the case of healthy individuals and SICU
patients.

The case of Subject 4 is particularly interesting, since the
position on the bed of this SICU patient was different in
the three sessions. Specifically, the patient was tilted to the
left in Session 1, to the right in Session 2 and to the center
in Session 3. Fig. 5 reports the boxplots pertaining to each
session and shows how the detected TEB median is robust
with respect to the patient placement on the bed.

IV. DISCUSSION AND CONCLUSIONS

This study proposes a noninvasive technique based on a
three-axis accelerometer placed under the head pillow to
acquire the BCG signal. A signal processing approach is
developed to capture the time interval between the maximum
of the BCG, based on its head-to-toe and dorso-ventral
components, and the R peaks in the ECG. This time interval,
referred to as TEB, was found by other studies to be



TABLE 11
MEDIAN, 25th AND 75" PERCENTILES FOR THE TEB VALUES FOR
EACH SUBJECT OVER | MINUTE WINDOW IN 3 ACQUISITION SESSIONS

TEB [s]
Subject Session 1 Session 2 Session 3
1 0.338 0.350 0.335
0.320-0.380 0.330-0.369 0.315-0.370
2 0.180 0.150 0.165
0.159-0.221 0.120-0.183 0.135-0.205
3 0.310 0.325 0.325
0.275-0.335 0.296-0.350 0.295-0.346
4 0.190 0.190 0.195
0.180-0.210 0.170-0.210 0.173-0.230
5 0.160 0.170 0.210
0.145-0.175 0.150-0.195 0.180-0.255
6 0.245 0.245 0.243
0.235-0.250 0.230-0.253 0.230-0.250
1-H 0.178 0.238 0.243
0.140-0.225 0.163-0.293 0.230-0.250
2-H 0.205 0.195 0.195
0.186-0.220 0.185-0.210 0.180-0.215
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Fig. 5. Box plot of the TEB detection for a SICU patient (Subject 4)

whose position on the bed changed over the three sessions (Session 1: left
Session 2: Right; Session 3: Center).

associated with the pre-ejection period (PEP) [9]-[11], which
is an important marker for ventricular contractility.

This study shows that the proposed methodology for TEB
detection provides consistent results both on healthy individ-
vals and SICU patients evaluated over multiple sessions. The
method appeared to be robust with respect to the position of
the patient on the bed (see Fig. 5), thereby yielding potential
for patient monitoring in a critical care environment. We note
that the TEB values may also be influenced by the bed incli-
nation, which was not the same among all the study partici-
pants as their clinical conditions were different. Interestingly,
though, while the bed inclination might have influenced the
absolute TEB values, it did not affect the reproducibility of
the results (see Table II). Future studies will be conducted
to investigate potential associations between changes in TEB
and changes in the patients’ health conditions, as suggested
by previous experimental and theoretical works [9]-[11],
[15]. Furthermore, to strengthen the validity of the result
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of this study, more SICU subjects will be recruited and
an animal study will be conducted to enlarge the dataset.
A direct correlation between echocardiography and ECG-
BCG measurements will be further investigated to assess
ventricular contractility.
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