
A Transdiagnostic Biotype Detection Method for Schizophrenia and 
Autism Spectrum Disorder Based on Graph Kernel 

Yuhui Du*, Hui Hao, Ying Xing, Ju Niu, Vince D Calhoun

Abstract— Psychiatric diagnoses based on clinical 
manifestations are prone to be inaccurate. Schizophrenia (SZ) 
and autism spectrum disorder (ASD) were historically 
considered as the same disorder, and they still have many 
overlaps of clinical symptoms in the current standard. 
Therefore, there is an urgent need to explore the potential 
biotypes for them using neuroimaging measures such as brain 
functional connectivity (FC). However, previous studies have 
not effectively leveraged FC in detecting biotypes. Considering 
that graph theory helps reveal the topological information in FC, 
in this paper, we propose a graph kernel-based clustering 
method to explore transdiagnostic biotypes using FC estimated 
from functional magnetic resonance imaging (fMRI) data. In 
our method, frequent subnetworks are identified from the 
whole-brain FCs of all subjects, and then the graph kernel 
similarity is computed to measure the relationship between 
subjects for clustering. Based on fMRI data of 137 SZ and 150 
ASD subjects, we obtained meaningful biotypes using our 
method, which shows significant differences between the 
identified biotypes in FC. In brief, our graph kernel-based 
clustering method is promising for transdiagnostic biotype 
detection. 

Index Terms— Biotype, Transdiagnostic, Graph kernel, 
Schizophrenia, Autism spectrum disorder 

I. INTRODUCTION

The reliability of psychiatric nosology has remained 
questionable due to the subjectivity of using self-reported 
symptom scores, which are not biologically based and show 
overlaps among disorders. Heterogeneity of the sophisticated 
brain may result in classifying mental diseases with different 
causal mechanisms into the same disorder [1]. This problem 
is especially obvious for mental disorders with similar 
symptoms, such as schizophrenia (SZ) and autism spectrum 
disorder (ASD). Both SZ patients and ASD patients have 
difficulties in communication and normal social behavior, 
which are highly heritable and fatal. The similarity in clinical 
phenotypes and genotype expressions in these two disorders 
can hinder precision treatment [2-4]. 

Recently, a promising avenue focusing on a 
transdiagnostic approach [5] to identify biotypes for 
psychiatry has been proposed to find a way out of the 
dilemma and even go beyond the existing diagnoses. In short, 
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a transdiagnostic approach moves away from the currently 
defined nosology and explores the potential for biological 
types which can better inform us about mental disorders using 
neuroimaging measures. Clementz et al. divided three 
schizophrenia spectrum disorders into three biotypes using 
nine cognitive control and sensorimotor reactivity variables 
[1]. Ivleva et al. proved that biotypes developed from 
neurophysiologic measures showed stronger between-group 
separation than the conventional diagnoses [6]. Chand et al. 
used structural MRI and discovered two distinct biotypes for 
SZ using semi-supervised machine learning [7]. To date, how 
to effectively utilize brain functional connectivity (FC) to 
explore biotypes is unsolved yet.  

FC estimated from the resting-state functional magnetic 
resonance imaging (fMRI) data is a useful measure to reflect 
functional interaction of the brain [8]. Graph theory works 
well in investigating FC [9]. In recent years, the graph kernel 
method has attracted increasing interest. A work mined the 
discriminative subnetworks and distinguished mild cognitive 
impairment patients from healthy controls based on the graph 
kernel similarity, which obtained competitive classification 
performance [10]. Similarly, Zhang et al. used a frequent-
subnetwork-mining method to carry out the graph kernel-
based classification for minimal hepatic encephalopathy and 
healthy controls [11]. However, there is no work applying the 
graph kernel approach to cluster subjects for biotype 
detection. 

In this study, we propose a graph kernel-based biotype 
detection method by taking advantage of the graph-based 
substructure pattern mining (gSpan) technique [12] and the 
graph kernel similarity measure [13]. We apply the method 
to discover biologically distinct biotypes of SZ and ASD 
using FC features, and validate that there are significant FC 
differences between the identified biotypes, providing 
meaningful insights for the transdiagnostic regrouping. 

II. MATERIALS AND METHODS

A. Subjects and Functional Connectivity Estimation
In this work, we used the fMRI data of 137 SZ and 150

ASD patients that were from Functional Biomedical 
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Informatics Research Network (FBIRN) and Autism Brain 
Imaging Data Exchange Ⅱ (ABIDE Ⅱ), respectively. Similar 
to an earlier work, we estimated the functional network 
connectivity (FNC) matrix (i.e., FC among networks) for 
each subject [4, 14]. Guided by 53 brain functional network 
templates from a large-sample healthy population, the 
individual-level brain functional networks and their relevant 
time courses were automatically estimated using a spatially 
constrained ICA approach. Then, the FNC matrix (size: 
53*53) was computed based on the time courses of networks 
for each subject. Due to the symmetry of the FNC matrix in 
which each element represents the connectivity strengths 
between two networks, the matrix is often converted into a 
vector containing only upper triangular elements for further 
analysis. However, such processing ignores the topological 
information of the FNC matrix. In our method, instead of 
pulling the FNC matrix into a vector, we threshold the matrix 
and work with it from a graph view. 

B. Similarity Computation between Subjects
In this subsection, a similarity matrix reflecting

relationships between subjects is obtained based on gSpan 
and graph kernel techniques. The similarity matrix will be 
used for clustering of subjects, aiming to explore potential 
biotypes. 

1) Mining of Frequent Subnetworks and Reconstructing
Functional Network Connectivity

Subnetwork (or subgraph) can reflect the local network 
structure. To mine the subgraphs that frequently exist across 
most subjects, many methods have been proposed, such as the 
priori-based algorithm [15], the frequent subgraph discovery 
algorithm [16], and gSpan [10, 17]. In this work, we extracted 
the frequent subgraphs from the FNC matrices of all SZ and 
ASD subjects via gSpan. 

Given a set of undirected graphs in which a graph 𝐺𝐺 
represents thresholded FNC matrix of a subject, we mine 
frequent subgraphs which exist in most graphs based on 
gSpan. Here, nodes and edges of a graph respectively 
represent brain functional networks and connectivity between 
paired functional networks. Mining frequent subgraphs using 
gSpan mainly consist of three steps. 1) Constructing Depth-
first search (DFS) trees for each graph, and each DFS tree can 
be coded by a unique DFS code. 2) Obtaining a lexicographic 
order to indicate the priority order of all codes derived from 
all graphs. 3) Mining frequent subgraphs in DFS trees 
corresponding to DFS codes with high priority order.  

Based on the mined frequent subgraphs, each graph 𝐺𝐺 is 
reconstructed to form a new sparse graph 𝐺𝐺� to represent the 
FNC matrix of each subject. Specifically, the edges of all 
frequent subgraphs existing in the graph 𝐺𝐺  constitute the 
edges of the 𝐺𝐺�. 

2) Graph Kernel-based Similarity Computation
To measure the topological similarity of the paired

reconstructed graphs, we use an iterative graph kernel method 
to perform similarity computation, i.e., Weisfeiler-Lehman 
(WL) subtree kernel. Given a reconstructed graph 𝐺𝐺� with an 

original label set of nodes, we iteratively update the label of 
each node by combining its current label and labels of 
adjacent nodes, and then the extended label set is obtained. 
By exploiting the extended label set, the Weisfeiler-Lehman 
subtree kernel between two reconstructed graphs 𝐺𝐺�𝑚𝑚 and 𝐺𝐺�𝑛𝑛 
in 𝑡𝑡th iteration can be defined as: 

𝑘𝑘𝑡𝑡 < 𝐺𝐺�𝑚𝑚,𝐺𝐺�𝑛𝑛 >=< 𝜙𝜙𝑡𝑡�𝐺𝐺�𝑚𝑚�,𝜙𝜙𝑡𝑡�𝐺𝐺�𝑛𝑛� >, (1) 

where 𝜙𝜙𝑡𝑡(∙) counts the frequency of each label within the 
extended label set of a reconstructed graph to form a feature 
vector. The similarity between the two reconstructed graphs 
is measured by the dot product between two feature vectors 
derived from two graphs. It is worth noting that the iteration 
stops until the node label sets of two graphs are identical or 
the number of iterations reaches the maximum.  

C. Biotype Detection
Based on the graph-kernel similarity, we use a hierarchical

clustering method [18] to cluster the subjects for the biotype 
detection. Here, each cluster represents one biotype. In 
addition, we use a spectral clustering method, Normalized cut 
(Ncut), to verify whether the identified biotypes are stable. 
When using Ncut, we set the number of clusters to 2 and 3, 
respectively, to examine if the biotypes identified using Ncut 
coincide with that from the hierarchical clustering. Based on 
the results from different clustering methods, we evaluate the 
“purity” of the identified clusters. The purity assessment uses 
the Jaccard coefficient to reflect the similarity between 
clusters, and the Jaccard coefficient is defined as the ratio of 
the sample size (i.e., subject number) of the intersection 
between clusters and the sample size of the union of clusters. 

In this work, we also compare our graph kernel-based 
method with the traditional similarity measure method in 
which we convert each FNC matrix into an FNC vector and 
calculate the Pearson correlation coefficient between the 
FNC vectors of subjects to build a between-subject similarity 
matrix. For an intuitive visualization of the results, we 
separately project the graph kernel-based similarity and the 
Pearson correlation similarity using original FNC features of 
subjects into a 2D plane using the t-Distributed Stochastic 
Neighbor Embedding (t-SNE) method [19], where the 
subjects are colored according to their cluster labels. 

In addition, we verify the stability of our method and the 
validity of biotypes by repeatedly performing the biotype 
detection on parts of the whole subjects. Specifically, we 
repeatedly conduct the clustering on 100 randomly selected 
subsets of subjects (here, one subset includes 90% of the 
subjects). For each subset of subjects, we evaluate the “purity” 
between the resulting clusters and the clusters obtained using 
the whole subjects. Finally, we average the “purity” across 
100 runs (corresponding to 100 subsets) for a summary. 

D. Functional Connectivity Differences of Biotypes
To evaluate the differences between the identified

biotypes, we further perform a two-sample t-test on each FNC 
between the subjects clustered in any two biotypes, resulting 
in T-values for FNCs.  
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III. RESULTS

A. Biotypes Extracted from SZ and ASD
Figure 1 displays the result of the hierarchical clustering

using the graph kernel similarity, which reflects how the 
subjects are grouped into clusters and the relationship 
between clusters. It is seen that all subjects can be divided 
into two clusters, named Biotype 12 and Biotype 22. When 
grouping the subjects into three clusters, the biotypes are 
named Biotype 13, Biotype 23, and Biotype 33, and Biotype 22 
included Biotype 13 and Biotype 23. Table Ⅰ shows the purity 
measurement between the results from the hierarchical 
clustering and Ncut methods using graph kernel similarity, 
supporting that the results of the two clustering methods are 
highly consistent with each other, which verifies the stability 
of our method and the reliability of our results. 

As mentioned above, we also compared our clustering 
results using the graph kernel similarity with that using 
traditional FC similarity. It is observed from Figure 2 that the 
graph kernel similarity worked well in identifying the 
biotypes, however, the traditional similarity method didn’t 
generate clear clusters. 

Table Ⅱ displays the mean of “purity” (across 100 runs) 
between the clustering results using all subjects and using 90% 
of subjects. It is seen that the biotypes are stable since the 
clustering “purity” was high between using all subjects and 
using part of subjects. 

B. Functional Connectivity Differences of Biotypes
Figure 3 shows the functional connectivity differences

between different biotypes. Figure 3 (A) supports that the FC 
differences between Biotype 12 and Biotype 22 are mainly 
within the sub-cortical (SC) region. Figure 3 (B) shows that 
the significant differences between Biotype 13 and Biotype 23 
mainly include FNCs within the SC regions, between the SC 
and auditory (AU) regions, and between the SC and 
cerebellar (CB) regions. Figure 3 (C) and (D) display 
significant FC differences between Biotype 13 and Biotype 33, 
and between Biotype 23 and Biotype 33, respectively. 
Compared to Biotype 33, Biotype 13 and Biotype 23 
consistently show the significant differences of FNCs within 
the SC regions, between SC and CB regions, and between SC 
and AU regions. 

Figure 1. The result of the hierarchical clustering method based on 
the graph kernel similarity. 

TABLE I. THE “PURITY” MEASURES OF CLUSTERS OBTAINED FROM 
DIFFERENT CLUSTERING METHODS 

Hierarchical Clustering 
Biotype 

12 

Biotype 
22 

Biotype 
13 

Biotype 
23 

Biotype 
33 

N
cu

t 

Biotype 12 0.9940 0 0.3253 0.6707 0 
Biotype 22 0.0035 0.9917 0 0.0043 0.9917 
Biotype 13 0.4345 0.0052 0.7067 0.1198 0.0052 
Biotype 23 0.5082 0.0075 0.0062 0.7077 0.0751 
Biotype 33 0.0037 0.8512 0 0.0046 0.8512 

Figure 2. T-SNE projection of subjects for (A) Pearson similarity 
using original FC features and (B) graph kernel similarity. Here, the 
subjects are colored by their cluster labels. 

TABLE II.  THE MEAN OF “PURITY” BETWEEN THE CLUSTERS USING ALL 
SUBJECTS AND THE CLUSTERS USING 90% OF SUBJECTS 

All subjects 

2 clusters 3 clusters 
90

%
 o

f 
su

bj
ec

ts
 2 clusters 

0.9909 0.0050 - - - 
0.0040 0.9919 - - - 

3 clusters 
- - 0.9901 0 0 
- - 0.0040 0.9783 0.0062 
- - 0.0021 0.0042 0.9909 

Figure 3. Differences between the biotypes in FNC. Here, the 
biotypes are identified by the hierarchical clustering based on graph 
kernel similarity. Figure 3 (A), (B), (C) and (D) show the T-values of 
two-sample t-tests on FNCs for (A) Biotype 12 vs. Biotype 22, (B) 
Biotype 13 vs. Biotype 23, (C) Biotype 13 vs. Biotype 33, and (D) 
Biotype 23 vs. Biotype 33, respectively. 

IV. CONCLUSIONS

Due to the inaccurate diagnosis of mental disorders, 
biotype detection has attracted increasing attention for mental 
disorders with highly overlapping symptoms. Neuroimaging 
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measure such as FC plays an important role to discover 
potential biotypes [20]. However, previous studies focusing 
on detecting biotypes using FC features ignore the graph 
structure in brain functional connectivity [21]. In this paper, 
we propose to use frequent subgraph mining combined with 
graph kernel-based similarity to discover the distinct biotypes 
via a clustering algorithm, and successfully apply our method 
to identify the biotypes in SZ and ASD.  

The identified biotypes manifest that the graph-based 
functional connectivity measures can separate subjects with 
psychosis into subgroups that are neurobiologically 
distinctive and biologically meaningful. By analyzing the 
significant functional connectivity differences among 
biotypes, we highlight the important role of the SC regions in 
refining the nosology of two disorders. For the identified two 
biotypes, Biotype 22 shows higher connectivity than Biotype 
12 within the SC domain. For example, compared to Biotype 
12, Biotype 22 exhibits significantly increased connectivity 
between the hypothalamus and putamen. For the identified 
three biotypes, there are significant connectivity differences 
mainly in SC, AU, and CB regions, involving the putamen, 
the thalamus, the middle temporal gyrus, the superior 
temporal gyrus, and the cerebellum. In particular, we found 
that the strength of functional connectivity presents the 
following trend: Biotype 33 > Biotype 23 > Biotype 13 within 
AU regions, Biotype 13 > Biotype 23 > Biotype 33 within SC 
regions, Biotype 13 > Biotype 33 > Biotype 23 between SC 
and CB regions, and Biotype 23 > Biotype 33 > Biotype 13 
between SC and AU regions. The significant differences 
among the detected biotypes demonstrate the meaning of 
transdiagnostic approaches, which requires more attentions 
[5, 22]. 

Taken together, we propose a new data-driven biotype 
detection method by effectively using the functional 
connectivity information at a higher level, although some 
parameters may be selected more automatically in the future. 
We believe our method can be applied to other mental 
disorders for benefiting the exploration of potential biotypes. 
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