
  

  

Abstract — Children with medically refractory epilepsy (MRE) 
require resective neurosurgery to achieve seizure freedom, 
whose success depends on accurate delineation of the 
epileptogenic zone (EZ). Functional connectivity (FC) can assess 
the extent of epileptic brain networks since intracranial EEG 
(icEEG) studies have shown its link to the EZ and predictive 
value for surgical outcome in these patients. Here, we propose a 
new noninvasive method based on magnetoencephalography 
(MEG) and high-density (HD-EEG) data that estimates FC 
metrics at the source level through an “implantation” of virtual 
sensors (VSs). We analyzed MEG, HD-EEG, and icEEG data 
from eight children with MRE who underwent surgery having 
good outcome and performed source localization (beamformer) 
on noninvasive data to build VSs at the icEEG electrode 
locations. We analyzed data with and without Interictal 
Epileptiform Discharges (IEDs) in different frequency bands, 
and computed the following FC matrices: Amplitude Envelope 
Correlation (AEC), Correlation (CORR), and Phase Locking 
Value (PLV). Each matrix was used to generate a graph using 
Minimum Spanning Tree (MST), and for each node (i.e., each 
sensor) we computed four centrality measures: betweenness, 
closeness, degree, and eigenvector. We tested the reliability of 
VSs measures with respect to icEEG (regarded as benchmark) 
via linear correlation, and compared FC values inside vs. outside 
resection. We observed higher FC inside than outside resection 
(p<0.05) for AEC [alpha (8-12 Hz), beta (12-30 Hz), and 
broadband (1-50 Hz)] on data with IEDs and AEC theta (4-8 Hz) 
on data without IEDs for icEEG, AEC broadband (1-50 Hz) on 
data without IEDs for MEG-VSs, as well as for all centrality 
measures of icEEG and MEG/HD-EEG-VSs. Additionally, 
icEEG and VSs metrics presented high correlation (0.6-0.9, 
p<0.05). Our data support the notion that the proposed method 
can potentially replicate the icEEG ability to map the 
epileptogenic network in children with MRE.  
Clinical Relevance — The estimation of FC with noninvasive 
techniques, such as MEG and HD-EEG, via VSs is a promising 
tool that would help the presurgical evaluation by delineating the 
EZ without waiting for a seizure to occur, and potentially 
improve the surgical outcome of patients with MRE undergoing 
surgery. 

 
 

I. INTRODUCTION 
For children with medically refractory epilepsy (MRE), 
resective surgery is the best option to achieve seizure freedom. 
If performed early in life, neurosurgery can improve the 
patient’s quality of life [1]. A successful outcome depends on 
the localization of the epileptogenic zone (EZ), the brain area 
that is indispensable for the generation of seizures, and its 
relationship to eloquent areas. The unavailability of methods 
to directly measure the EZ implicates an imprecise estimation 
of its location and extent, through the use of noninvasive 
presurgical tests [2]. When those tests are inconclusive, 
invasive intracranial electroencephalography (icEEG) is 
performed, as it is considered the benchmark to delineate the 
seizure onset zone (SOZ), the most logical estimator of the EZ 
[3]. However, icEEG presents several limitations due to its 
invasiveness [4], and the implantation of icEEG electrodes is 
restricted to limited brain areas, leaving others areas 
unexplored. Thus, noninvasive biomarkers that can identify 
the EZ are needed to improve the surgical outcome of patients 
with MRE. 

Here, we propose an innovative method based on Functional 
Connectivity (FC) that quantifies statistical dependencies 
among remote neurophysiological events in the brain 
networks. Moreover, we combine FC and graph theory 
concepts to evaluate how brain areas can be functionally 
connected in relation to the EZ, with the hypothesis that 
increases of FC are linked to the EZ, while decreases of FC are 
seen in distal brain regions [5], [6]. We validated our method 
by analyzing invasive and noninvasive (MEG and HD-EEG) 
data of children with MRE, classified as good outcome after 
surgery, and computed source localization (via beamformer) 
on MEG and HD-EEG to build virtual sensors (VSs) at the 
same icEEG locations. This noninvasive approach shows how 
FC computed at the source level (VSs) can provide spatial 
information of the epileptogenic tissue with comparable 
precision to the benchmark technique (i.e., icEEG). The 
proposed FC analysis may contribute to the presurgical 
evaluation of children with MRE since it can help identify the 
EZ and predict surgical outcome noninvasively, even in the 
absence of visually noticeable epileptic activity. 

II. METHODOLOGY  
A. Patient cohort 
We retrospectively analyzed eight children (five females, age: 
12.5 ± 4.72 years) with MRE who underwent epilepsy surgery 
at Boston Children’s Hospital (BCH) between 2011 and 2016 
(Table I). The inclusion criteria that each patient met in order 
to be included were the following: (i) long-term monitoring 
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with icEEG (i.e., grids, strips, and/or depth electrodes); (ii) 
simultaneous MEG (306 sensors) and HD-EEG (72 channels) 
recordings, (iii) availability of pre-surgical MRI, post-
implantation computerized tomography (CT), and post-
operative MRI; (iv) accurate information regarding the 
resection, and (v) surgical outcome available at least at one 
year after surgery. Surgical outcomes were evaluated using the 
Engel’s scale (>1 year of post-surgical follow-up), and patients 
were considered as good outcome when the Engel score was 
equal to 1. The protocol was approved by BCH Institutional 
Review Board (IRB-P00022114).  
B. Simultaneous HD-EEG and MEG recordings 
We performed simultaneous MEG and HD-EEG at the MEG 
Core Laboratory of Athinoula Martinos Center for Biomedical 
Imaging (Charlestown, MA). MEG recordings were obtained 
in a three-layer magnetically shielded room with a 306-
channel whole-head MEG system (VectorView, Elekta 
Neuromag, Helsinki, Finland) characterized by 204 planar 
gradiometers and 102 magnetometers over 102 locations; HD-
EEG recordings were obtained using a 70-channel electrode 
cap (EASYCAP, Herrsching, Germany) (plus two electrodes 
covering the low temporal areas at T1 and T2), by positioning 
the electrodes according to the conventional 10-10 system. 
Data were acquired with a sampling frequency of 600, 1000, 
or 2000 Hz. 
C. Long-term intracranial EEG recordings 
Since noninvasive neuroimaging methods do not always 
provide accurate information on the EZ, icEEG long-term 
monitoring (Phase II of the presurgical evaluation) is essential 
for a better delineation of the epileptic focus and/or the 
eloquent brain regions. For this study, icEEG was recorded 
with subdural grids and strips with 2.3 mm of diameter and 
10 mm of distance between each one (Ad-Tech., USA), and/or 
depth electrodes consisted of 10 linearly arranged contacts 
with 1.1 mm of diameter and 3-5 mm of inter-distance (Ad-
Tech., USA) by using XLTEK NeuroWorks (Natus Inc., 
USA). Data were acquired with a 600, 1000, or 2000 Hz 
sampling rate. For each patient, the location, number, and type 

(grids, strips, or depths) of electrodes were prospectively 
decided as part of patient’s surgical plan, which was 
established by the epilepsy surgical team independently from 
this study.  
D. Identification of each icEEG electrode location 
Anatomical MRI scans were acquired before and after 
surgical resection with magnetization-prepared rapid 
acquisition gradient-echo sequences (MPRAGE; TE = 1.74 
ms, TR = 2, 520 ms, voxel size = 1 × 1 × 1 mm3) using a high-
resolution 3T scanner (TIM TRIO, Siemens AG, Erlangen, 
Germany). After implantation, Computed Tomography (CT) 
scans (voxel size = 0.5 × 0.5 × 0.5 mm3) were performed to 
obtain the actual locations of icEEG electrodes. Therefore, we 
determined the anatomical locations of both subdural and 
depth electrodes by co-registering the post-implantation CT 
with the pre-operative MRI, using Brainstorm [7]. The exact 
electrode location was defined visually based on the intensity 
on the co-registered CT-MRI image, and mapped on the three-
dimensional model of the patient’s cortical surface 
reconstructed from the preoperative MRI using FreeSurfer 
[8]. To account for brain shift that occurs after 
electrocorticographic implantation, subdural electrodes were 
projected onto the cortical surface. Moreover, when both 
subdural and depth electrodes were implanted, depth 
electrodes were adjusted to compensate for brain shift [9].  

E. VSs reconstruction: forward and inverse method 
One of the objectives of this study is to investigate whether 
FC metrics estimated at the source level from noninvasive 
methods (MEG/HD-EEG) is comparable with those estimated 
invasively (icEEG). Firstly, we solved the forward problem 
by extracting the cortical surfaces from the patient’s pre-
operative MRI (through FreeSurfer), and constructing a 
realistic head model using OpenMEEG software [10]. The 
realistic boundary elementary model (BEM) was created 
using a three-layer geometric head model, consisting of the 
scalp, inner skull, and outer skull, for both MEG and HD-EEG 
recordings. The source space included the entire brain 
volume. Secondly, we solved the inverse problem using the 
linearly constrained minimum variance (LCMV) beamformer 
[11] in order to localize the underlying neural generators. Data 
covariance was computed on artifact-free portions selected 
from MEG and HD-EEG recordings filtered between 1 and 
50 Hz, and an identity matrix was used as noise covariance. 

 
Fig. 1: FC estimates from icEEG. Pairwise FC matrices are estimated 
for each patient from icEEG. Diagonal elements of the matrix represent 
the connectivity of each node with itself (containing only zero values); 
off-diagonal elements of the connectivity matrix represent connectivity 
between pairs of distinct channels (in this case, icEEG electrodes). 

TABLE I: PATIENT’S INFORMATION 

Patient # Age Sex icEEG 
[#] Side Etiology Res.Vol 

[cm3] 

1 10 M ECoG 
[80] R Unknown 13.09 

2 6 F sEEG 
[90] L FCD 

(T) 13.70 

3 10 F 
ECoG, 
sEEG 

[144+10] 
R DNET 

(M, Fr) 55.92 

4 13 F ECoG 
[72] L Unknown 

(T) 18.66 

5 17 M 
ECoG, 
sEEG 

[72+20] 
L N  

(T) 38.54 

6 8 F 
ECoG, 
sEEG 

[80+20] 
R Unknown 23.71 

7 18 M ECoG 
[64] L FCD 

(M, T) 32.39 

8 18 F ECoG 
[88] L FCD  

(Fr) 26.79 

M: Male, F: Female, R: Right, L: Left, DNET: Dysembryoplastic 
Neuroepithelial Tumor, FCD: Focal Cortical Dysplasia, N: Neoplasm, 
Fr: Frontal, M: Mesial, P: Parietal, T: Temporal. 
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The neural activity of each brain location was reconstructed 
with VSs placed at the same locations where the icEEG 
electrodes were implanted during Phase II, using the output of 
the beamformer analysis. Non-overlapping regions of interest 
(ROIs) were defined for each icEEG electrode and included 
all the closest volume points surrounding the center of each 
electrode: 5 mm and 10 mm for depth and subdural electrodes, 
respectively [9]. Finally, we reconstructed VSs time-series for 
MEG (MEG-VSs) and HD-EEG (HD-EEG-VSs) separately 
by computing for each VS its mean activation (mean across 
volume points) [9]. 
F. Functional Connectivity Analysis  
For each patient, icEEG and the reconstructed VSs time-series 
(MEG-VSs and HD-EEG-VSs) were pre-processed and 
filtered between 1 and 50 Hz. Data were then classified as (i) 
with IEDs (3-s segments containing frequent interictal 
spikes), and (ii) without IEDs (3-s segments containing 
minimal interictal spikes or no spikes at all). To this purpose, 
for each signal (i.e., icEEG, MEG-VSs, HD-EEG-VSs), we 
visually selected and then analyzed one-minute (20 epochs of 
3 s) of each type of activity. The functional organization of 
anatomically separated brain regions was explored using the 
following FC methods: (i) Amplitude Envelope Correlation 
(AEC), (ii) Correlation (CORR), and (iii) Phase Locking 
Value (PLV). We selected these methods to capture different 
characteristics of iteration among brain signals across 
functionally connected regions by focusing on the similarity 
between two signals in the time domain (CORR), the 
amplitude correlation (AEC), and the instantaneous phase 
difference (PLV), respectively [12].  These three methods 
were computed for the following frequency bands: delta (1-4 
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma 
(30-50 Hz), and a broadband of frequencies (1-50 Hz). Thus, 
for each patient, we computed three FC matrices (AEC, 
CORR, PLV) for each epoch and each type of data (IEDs vs. 
without IEDs) using Brainstorm. The connectivity matrix 
(Fig. 1), characterized by N×N nodes, describes the pairwise 
connectivity between all nodes of the network [13], which 
here correspond to icEEG electrodes (for the invasive 
analysis) and to VSs (for the noninvasive analyses). Finally, 
for each patient we obtained three averaged FC matrices (i.e., 
AEC, CORR, PLV), separately for both data with and without 
IEDs, after averaging across epochs. These FC matrices were 
used to investigate the centrality of each brain region 
(corresponding to each sensor) within the network [6], using 
the graph theory. 
G. Graph Theory Analysis  
Each average FC matrix was used to represent the brain of 
each patient as a graph consisting of a set of nodes, 
corresponded to each row and column of the matrix (equal to 
icEEG electrodes and VSs), and undirected weighted edges, 
corresponded to the inverted FC values [14]. For each patient, 
we mapped a subnetwork, known as the Minimum Spanning 
Tree (MST) [15], based on each FC matrix (i.e., AEC, CORR 
and PLV, separately for data with and without IEDs) of 
icEEG, MEG-VSs and HD-EEG-VSs signals (Fig. 2), using 
MATLAB®. Then, we estimated the importance of each 
electrode (node) within the network of each patient by 

computing four centrality measures from each MST [16]: (i) 
betweenness: number of times a node acts as a "bridge" along 
the shortest path between two other nodes; (ii) closeness: 
average length of the shortest path between the node and all 
other nodes in the graph; (iii) degree: number of links 
connected to a node; and (iv) eigenvector: measure of the 
influence of a node in a network.  
H. Resected vs. non-resected areas 
We defined the boundaries of the resected area by co-
registering the pre-operative and post-operative MRIs via 
Brainstorm. For each icEEG electrode and VSs, we computed 
their distance from resection as the Euclidian distance of their 
center from the closest resection margin [17]. Then, we 
defined as resected the sensors (icEEG and VSs) that have a 
distance ≤ 10 mm from resection. This differentiation 
between the two zones (resected vs. non-resected area) helped 
us to associate our FC and centrality measures with the EZ, 
which we could assume to correspond to the resection, since 
the patients were seizure-free after surgery (good surgical 
outcome).  
I. Statistical Analysis  
We used a Wilcoxon signed-rank test to compare the FC and 
centrality measures, estimated from icEEG and VSs, between 
inside and outside resection. Statistical analysis was 
performed in MATLAB®, and we considered statistical 
significance for p < 0.05. Further, we used Spearman’s rank 
correlation to assess the correlation of FC and centrality 
measures between icEEG and VSs, separately for resected 
and non-resected areas. 

III. RESULTS  
A.  Invasive (icEEG) findings 
We observed that icEEG FC were increased inside resection 
compared to outside, with a p = 0.0078 obtained for all the 
following measures: AEC [for alpha, beta, and broadband 
bands] on data with IEDs, and AEC theta on data without 
IEDs. Using graph analysis, we observed that all centrality 
measures (i.e., betweenness, closeness, degree, and 
eigenvector), estimated from both AEC and PLV methods on 
data with and without IEDs, were higher inside than outside 
resection (p < 0.05).  

 
Fig. 2: Graph analysis computed on each FC matrix. On each 
averaged FC matrix (AEC, CORR, PLV), computed for data with IEDs 
and without IEDs separately, we represented the brain of each patient as 
a graph by using the MST and computing its centrality measures to 
estimate the importance of each node (sensor) within the network. 
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B. Noninvasive findings (MEG-VSs and HD-EEG-VSs) 
From MEG-VSs analysis, we found increased AEC inside 
compared to outside resection (p = 0.0156), for the broadband 
data without IEDs. On the other hand, HD-EEG-VSs analysis 
did not show statistical significance for any FC metrics. From 
the graph analysis, we observed higher connectivity within 
resection compared to outside (p < 0.05) from both MEG-VSs 
and HD-EEG-VSs analyses. HD-EEG-VSs analysis showed 
significant differences for all centrality measures (i.e., 
betweenness, closeness, degree, and eigenvector), obtained 
from both CORR and PLV methods on data with and without 
IEDs; MEG-VSs analysis showed significant differences for 
betweenness, closeness, and degree, estimated from both 
AEC and PLV methods on data without IEDs.  
C. Invasive vs. noninvasive findings 
We showed the association of two centrality measures (i.e., 
AEC closeness theta and PLV betweenness theta on data 
without IEDs), obtained from both icEEG and MEG-VSs, 
with the EZ (Fig. 3). Both these metrics showed higher values 
inside resection than outside (p < 0.05) for icEEG and MEG-
VSs data, and a similar trend was obtained for HD-EEG-VSs 
without reaching a statistical significance. Further, we found 
that several icEEG FC and graph metrics correlated 
significantly with the same metrics estimated via VSs, both 
inside and outside resection, with a Spearman’s rho 
comprised between 0.6 and 0.9 (p < 0.05). 

IV. CONCLUSIONS  
In this study, we propose a new noninvasive method, based 

on MEG and HD-EEG, that estimates FC metrics at the source 
level through an “implantation” of virtual sensors (VSs) in 
children with MRE undergoing presurgical evaluation. Our 
retrospective data support our hypothesis that increased FC is 
linked to the EZ, since we showed that, for patients with good 
surgical outcome (regarded as benchmark to identify the EZ 

correctly), higher FC values were found inside compared to 
outside resection. As well, graph analysis suggests that highly 
central nodes (hubs) are located inside resection zone for both 
icEEG and VSs analyses, since higher centrality values were 
seen there compared to outside. Our results confirm that FC 
metrics estimated at the source level from noninvasive data, 
by reconstructing VSs (beamformer) at the icEEG locations, 
provide similar findings to those obtained invasively. This 
methodological limitation of our study could open up new 
possibilities to build VSs not only in specific positions but in 
the entire cortex, overcoming spatial limitations of icEEG. 
Further, several findings were obtained on data with IEDs as 
well as without IEDs: this could provide prognostic correlates 
useful for treating pediatric epilepsy even in the absence of 
visually noticeable epileptic activity in MEG/HD-EEG 
recordings. Our proposed method could help the presurgical 
evaluation of children with MRE by estimating the EZ 
without waiting for a seizure to occur, and potentially improve 
surgical outcomes. 
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Fig. 3: Association between centrality measures and EZ. IcEEG and 
MEG-VSs showed, for AEC closeness theta (top of the figure) and PLV 
betweenness theta (bottom of the figure), higher connectivity inside 
than outside resection on data without IEDs. A similar trend was 
observed for HD-EEG-VSs without obtaining statistical significance. 
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