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Abstract— Blood Pressure (BP) is one of the four primary vi-
tal signs indicating the status of the body’s vital (life-sustaining)
functions. BP is difficult to continuously monitor using a
sphygmomanometer (i.e. a blood pressure cuff), especially in
everyday-setting. However, other health signals which can be
easily and continuously acquired, such as photoplethysmogra-
phy (PPG), show some similarities with the Aortic Pressure
waveform. Based on these similarities, in recent years several
methods were proposed to predict BP from the PPG signal.
Building on these results, we propose an advanced personalized
data-driven approach that uses a three-layer deep neural
network to estimate BP based on PPG signals. Different from
previous work, the proposed model analyzes the PPG signal
in time-domain and automatically extracts the most critical
features for this specific application, then uses a variation
of recurrent neural networks (RNN) called Long-Short-Term-
Memory (LSTM) to map the extracted features to the BP value
associated with that time window. Experimental results on two
separate standard hospital datasets, yielded absolute errors
mean and absolute error standard deviation for systolic and
diastolic BP values outperforming prior works.

I. INTRODUCTION

Hypertension, defined as systolic blood pressure (SBP)

larger than 140mmHg or diastolic blood pressure (DBP)

larger than 90mmHg1 [1], is estimated to have caused 9.4

million annual deaths globally, 17% of the total death in 2012

and 7% of total disability-adjusted life years (DALYs) [2].

If left uncontrolled, hypertension causes stroke, myocardial

infarction (MI), cardiac failure, dementia, renal failure, and

even blindness. In adults, hypertension after diabetes is the

second reason to increase the risk of cardiovascular disease

(CVD) and several types of cancer, as well as multiple non-

fatal diseases. Hypertension has been increasing in recent

years. By 2030, 40.5% of the US population is projected

to have some form of CVD [3]. While people with the

risk of hypertension need to measure their blood pressure

frequently, conventional cuff-based BP measurement devices

are expensive and inconvenient for continuous monitoring.

Thus the development of alternative methods is necessary.

Blood Pressure (BP) – commonly measured in mmHg

– is a quasi-periodic signal in sync with an individual’s

heartbeats. The upper peak in each period is called the

Systolic Blood Pressure or SBP, and the lower bound in each

period is called Diastolic Blood Pressure or DBP (Figure 1).

While blood pressure is difficult to monitor continuously in a

non-clinical setting, Photoplethysmography (PPG) is a non-

invasive optical method that measures a related signal: blood

volume temporal variations in the vessels and tissues. PPG

signals are obtained from pulse oximeters, emitting visible

1for a patient who is not undergoing drug treatment for hypertension.

light (LED) on the skin and measuring the micro-variations

in the transmitted, or reflected light intensity (photo-diode).

PPG sensors are small in size and low cost to build, and they

already exist in most newer wearables (e.g. smartwatches,

activity trackers, and smart rings).

In recent years, there has been an extensive body of

research studying similarities and correlation of PPG signals

and Aortic Pressure waveforms, as well as the possibility of

estimating SBP and DBP based on PPG signals. Since both

signals are originating from the same source (the individual’s

heartbeats), they are highly correlated. However, since Aortic

and PPG are generally measured from different parts of the

body (e.g. arm and wrist) using different devices, they are

typically out of phase. Figure 1 is based on experimental data

after time-shift alignment (since PPG signal does not have

a unit, in the figure it is scaled for easier readability). Some

methods such as the one in [4] are proposed to automatically

detect and compensate for this phase difference.

Due to convenience of use and also low cost of PPG

sensors, estimating blood pressure metrics (SBP and DBP)

from PPG signals is of great interest. The common approach

for this is to first extract a set of predefined features from

PPG, and then use some regression models to estimate BP

from those features. A shortcoming of this approach is that

since these features are predefined and generic, some of the

important information inside the raw PPG signals (including

patterns specific to each subject) might be lost, which if

captured, could improve the accuracy of BP estimation. Other

than that, these methods do not utilize characterizations of

PPG as a time-series signal. In this paper, we propose the

use of a new framework to address these shortcomings.

Our proposed approach makes the following advancements

with respect to prior works in the literature: (i) The proposed

method utilizes a Convolutional Neural Network (CNN)

layer, which “learns” the most informative features of the
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Fig. 1: Aortic Pressure and PPG raw signals
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PPG signal for this application (BP estimation) in a nonlinear

and efficient way, as part of an optimization problem; (ii)

We adopt a Long-Short Term Memory (LSTM) model to

capture long-term temporal inter-dependencies in a seamless

and automated procedure.

We train and test the model for each subject separate from

others. We test the proposed framework on two standard

hospital datasets. Our proposed model on 20 randomly

picked subjects from MIMIC-II dataset [5] gives prediction

error (MAE±SDAE) of 3.70±3.07 mmHg and 2.02±1.76

mmHg, for SBP and DBP values respectively. Also on

UQVSD dataset, prediction errors (MAE ± SDAE) are

3.70±3.07 mmHg and 2.02±1.76 mmHg, for SBP and DBP

respectively. To the best of our knowledge, these results on

similar datasets outperform other methods in the literature.

The rest of the paper is organized as follows. Section II

overviews recent work in this area. Section III describes our

proposed framework and methodology. Section IV introduces

the two real-world datasets we used. In Section V we present

the results and compare those with state-of-the-art methods.

Section VI concludes the paper.

II. RELATED WORK

Estimation of Blood Pressure from PPG signal is studied

in prior works and several methods are proposed for that. In

[6], [7] and [8], the authors propose methods based on Pulse

Transit Time (PTT). PTT is defined as the time required for

the blood pressure wave to travel from the source (heart)

to the wrist (where the PPG signal is recorded, and it is

measured from the time shift between the Electrocardiogra-

phy (ECG) and PPG signals. In [9], authors consider every

sample point in one cycle as a separate feature and use

Principal Component Analysis (PCA) to reduce the number

of features, and then apply regression algorithms on the set

of reduced features. In [10], authors propose a list of some

potential features of the PPG signals (e.g. area under the

curve, time length of certain points on the signal in one

cycle, etc.), and then use an autoencoder to reduce the list

of features and at the end estimate BP based on the reduced

set of features using a feed-forward neural network.

All these methods start by extracting a set of features from

PPG signals and then use those features to estimate blood

pressure. One shortcoming of this approach is that since these

features are predefined, they may fail to capture all the details

in the signal that might be useful for a specific task such as

BP estimation. Some of these details might also be different

from one subject to another. Even in [9] that the authors

start with the whole signal, the dimensionality reduction

procedure is not optimized for the BP estimation task, as

PCA is a generic data compression method. Additionally,

none of these approaches exploit possible characterizations

of the PPG as a time-series signal.

III. METHODOLOGY

Different from the common approach described in Section

II, our proposed method for each subject automatically

extracts a set of features that are optimal for this application,
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Fig. 2: Overview of the proposed method to estimate BP

from single channel PPG signal

as part of the training process. It also captures and utilizes

temporal dependencies in the data using an advanced neural

architecture. Figure 2 presents the block diagram of the

method we propose to estimate SBP and DBP using PPG

signal. The method is composed of the following blocks and

components: (A) Signal Pre-processing; (B) Machine Learn-

ing, composed of an automatic feature extraction module

(CNN) and a time series analysis module (LSTM); and (C)

Model Evaluation block. We explain the first two components

here and describe the Evaluation block later in Section V.

A. Pre-processing

Since both Aortic Pressure and PPG originate from heart-

beats, we do not expect to see high-frequency elements

in their waveforms. Thus, higher frequency elements are

likely due to noise. Additionally, since the PPG is a relative

signal and its DC offset (mean value) does not have an

interpretation of our interest, we eliminate the mean value

of the signal (the zero frequency element). There are many

popular methods to eliminate a range of frequencies from a

signal. Herein, we use a traditional Fourier Transform (FFT)-

based approach. In the PPG signal, we set a band-pass filter

eliminating the frequencies outside the range 0.1 − 8 Hz.

The resulting waveform still contains all the information

necessary for our estimation, while being affected by smaller

noise energy. In preprocessing the Aortic Pressure signal, we

apply a low-pass filter with a cut-off frequency of 5Hz to

the raw signal to eliminate sharp peaks in the signal. After

these steps, we split both the PPG and ABP into windows of

8 s with a step of 2s, resulting in 6s overlaps between two

consecutive windows. We further scale the PPG signals in

each window to zero mean and unit variance. Each window

of the PPG signal is equivalent to a vector of length 8fs,

which fs is the sampling frequency. We use this vector as the

model input. In the ABP signal, the maximum and minimum

values in each window are interpreted as the SBP and DBP

respectively for that interval (Figure 1).

B. Deep Learning

Deep Neural Networks primarily including Convolutional

Neural Network (CNN), Recurrent Neural Network, and
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Multi-Layer-Perceptron (MLP), facilitate task-adapted fea-

ture representation of the data. CNN, which was originally

designed to capture the variability of 2D data, in [11] is

shown to perform well on 1D data and outperform other

approaches. CNN consists of an initial layer of convolutional

filters – boxes with certain sizes sF, and certain sets of

trainable weights which slide over the input data – followed

by an activation function (e.g. sigmoid), a pooling layer with

pool size sP, and after that a batch normalization layer [12].

RNN is an effective tool for the analysis of time-series data

since it learns contextual patterns in the input from previous

time steps. Unlike feed-forward networks, RNN uses some

internal states to process temporal sequences of the input.

However, learning to store information over extended time

intervals via recurrent back-propagation may necessitate an

excessive training time, due to the insufficient decaying error

gradient back-flow (vanishing gradient) discussed in [13].

Long-Short-Term-Memory (LSTM) is a variation of RNN

and solves this issue by using memory blocks, for which

the trainable “forget gate”, “input gate” and “output gate”

control which parts of the data are worth saving and which

parts are not. This idea solves the issue of vanishing gradient

mentioned above, and the result is a strong tool to learn

and track long-term inter-dependencies in the input data

(e.g. time series data) [13]. The combination of CNN with

a subsequent LSTM has been shown to perform well on

PPG signals. In [14] authors use a similar architecture for

estimating heart-rate and Bio-metric ID using PPG.

The model is trained in Python environment (version 3.6.3)

and implemented using Keras 2.2.4 [15], with Tensorflow

1.3.1 backend. The CNN layer starts with a 1-D filtering

operation with filter size 15 (sF), followed by a Rectified

Linear Unit (RELU) [16] as activation function, a batch-

normalization layer [12], a max-pooling layer, and finally

a dropout layer [17] with dropout rate = 0.1. In the max-

pooling layer the pooling size sP is set to 4, which means the

layer takes the maximum out of every 4 consecutive values in

a filter (non-overlapping) and discards the rest. Unlike some

other common deep network layers (e.g. MLP), the Max-

pooling layer does not have trainable weights. Dropout layers

are probabilistic masks that in every gradient update (mini-

batch) block a portion of the nodes. In our implementation,

the dropout rate = 0.1 means that in every gradient update,

there is a 10% chance for each node in the layer to be

dropped out (or masked). These two-layers (Max-pooling and

Dropout) are well-known methods used to avoid overfitting.

Our LSTM network is composed of two identical LSTM

module in series. Each of them has 64 units (nU), with tanh

as the activation function for the hidden state data and output

data, and hard-sigmoid as the recurrent activation functions

for the forget, input, output gates [13].

The model was trained using Adam optimizer [18]. The

batch size was set to 20 to balance the training time vs

noisiness of gradient updates trade-off. The hyperparameters

mentioned above and also the number of layers for each

network (CNN and LSTM), were optimized with grid search.

Changing the hyperparameters (e.g. sF, nU, sP, etc.) or the

Fig. 3: Scaled raw PPG and ABP signals in the same time

interval, from MIMIC-II dataset.

number of layers did not result in an improved final output.

IV. DATASET

To evaluate the accuracy and efficiency of the proposed

method, we used two publicly accessible real-life datasets.

MIMIC V.3 2015: Multi-parameter Intelligent Monitoring

in Intensive Care, provided by [5]. The MIMIC-II dataset

includes healthcare information and signals of thousands

of patients at hospitals between the years 2001 and 2012.

An example of PPG and corresponding ABP signals from

this dataset is given in Figure 3 (the PPG signal is scaled

for readability). These signals were originally recorded at a

sampling frequency fs=125 Hz, with a minimum accuracy

of 8 bits. We randomly selected data corresponding to 20

different subjects -five minutes long each- from this dataset

to test our model.

The University of Queensland Vital Signs Dataset: This

dataset covers a wide range of BP values, recorded from 32

surgical patients in duration ranging from 13 minutes to 5

hours, at the Royal Adelaide Hospital, Australia [19]. This

dataset is recorded at a sampling frequency fs = 100Hz. We

used 49 measurements (10 minutes each) from this dataset.

The majority of studies on this topic have used parts of one

of these two datasets. However, details of how portions of

these datasets were selected for experiments are not revealed.

We acknowledge that the data we used for our experiment,

might not exactly match the data used in similar studies, but

in order to conduct a fair comparison, we picked a portion

of each dataset randomly.

For both datasets, we re-sampled the PPG and ABP signals

at 20 Hz and re-adjusted the timings [4]. The distribution of

BP in MIMIC-II data (the portion we used in this experiment)

is presented in Figure 4. After these steps, the resulting PPG

signals and ABP values are ready to be used for training and

evaluation of our method.

V. EXPERIMENTAL RESULTS

The preprocessed PPG signals and BP values from both

datasets (Section IV) are further normalized to zero mean

and unit variance before being used as the input to the

network. The most important nonlinear features of the input

data are extracted through a CNN network, and then these

features are given to a two-layer LSTM network to do

the time series analysis. It is important to note that unlike

conventional methods, feature extraction is performed as part
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TABLE I: Performance comparison with prior works

Work Dataset
SBP DBP

MAE SD MAE SD

[20] MIMIC-II 4.47 6.85 3.21 4.72
[21] MIMIC-II 8.54 - 4.34 -
[9] MIMIC-II 3.97 7.99 2.43 3.37
[22] MIMIC-II 3.80 3.46 2.21 2.09
Our work MIMIC-II 3.70 3.07 2.02 1.76

[23] UQVSD 11.64 8.20 7.62 6.78
[24] UQVSD 4.77 7.68 3.67 5.69
Our work UQVSD 3.91 4.78 1.99 2.45

of the training process; the trainable weights in the CNN are

optimized to extract the features that are most informative

toward the estimation of the BP values. We perform leave-

one-window-out validations. Hence, one 8s time window is

kept separate, and training is done on the rest of the data.

Then, the trained model is evaluated on the test sample. Also

for training, we do not use three time-windows on each side

of the test set, to account for the 6s overlap between two

consecutive time windows. With this strategy, the training

data and test data will be completely separate from one

another. We are training and testing the model for each

subject independent from the others. The performance of the

network is evaluated using the following three metrics:

Absolute Error (AE): for each test sample, AE is defined

as AEi = |BPTi
−BPEi

|, in which BPTi
is the true or target

blood pressure, and BPEi
is the estimated blood pressure

when the window number i is held out as the test sample.

Consequently the mean value of AEi and the standard

deviation over the number_of_samples iterations, and

over the set of subjects are calculated and reported in the

Table I. The mean and standard-deviation of AE would

be a rough estimate of the error value on predictions, and

the robustness and reliability of the method respectively.

A model is selected as a strong predictor if it produces

small MAE and SDAE values. The method proposed in

this paper, to the best of our knowledge, outperforms other

frameworks and techniques that are available until this time.

BHS: As a second metric, we consider a standard com-

monly used for blood pressure measurements accuracy,

provided by the British Hypertension Society (BHS) [25],

which grades the measurement accuracy into three groups

(A-C). This metric measures the fraction of measurements

(or estimations) which are within a certain range – 5, 10

Fig. 4: Distribution of Systolic BP and Diastolic BP

Fig. 5: Prediction Error for SBP (left), and DBP (right)

and 15 mmHg – of the target values for unobserved data.

Based on this metric, our proposed model (to the best of our

knowledge) is the only method that gets Grade A for both

SBP and DBP (in predictions based on PPG only). Detailed

results are given in Table II. For comparison, authors in [9]

report grade A for DBP and below C for SBP estimation on

MIMIC-II dataset. Also authors in [24] report grade A for

DBP, and B for SBP estimation on UQVSD dataset.

AAMI: As the third metric, we consider a different stan-

dard provided by the US Association for the Advancement

of Medical Instrumentation (AAMI) [26]. Based on this

Standard, a measurement algorithm is valid if the ME (Mean

Error) of the measurements is below 5 mmHg and the SD

of Errors is smaller than 8 mmHg. The results are presented

in Table III. Our model passes the AAMI standard criteria

for both SBP and DBP on both dataset. For comparison, our

proposed model produces better error values (lower mean and

σ) compared to [24] on UQVSD data. On MIMIC-II dataset

we get lower error σ but higher error mean compared to [9].

The distribution of the prediction error for one subject

from the MIMIC-II dataset is depicted in Figure 5. Based on

the histograms, prediction errors are mostly small. However,

in some rare cases (less than 1% of times) the estimation er-

ror for SBP goes beyond the 20 mmHg range from the target

value. For DBP, that never happened in our experiments.

The Bland-Altman plot for the predictions on the same

TABLE II: BHS Standard [25] vs. our results

(a) BHS Standard Minimum Requirements

Cumulative Percentage Error

≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%

(b) Our results on the two datasets

Cumulative Percentage Error (Grade)

Dataset Signal ≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

MIMIC-II SBP 77% (A) 92% (A) 96% (A)
DBP 93% (A) 97% (A) 99% (A)

UQVSD SBP 75% (A) 92% (A) 96% (A)
DBP 92% (A) 98% (A) 99% (A)

5661



TABLE III: Comparison of results with AAMI Standard [26]

Mean Error σ of Error

AAMI Criteria: ≤ 5 ≤ 8

MIMIC-II SBP 0.21 6.27
DBP 0.24 3.40

UQVSD SBP 0.52 6.16
DBP 0.20 3.15

Fig. 6: Bland-Altman plot for SBP and DBP

subject is presented in Figure 6. Predictions on lower values

of BP – left side of each plot - are more reliable (smaller

error). Note that these samples correspond to when the

subject is likely to be less active (potentially at rest), at which

the PPG signal is expected to be less noisy and more reliable.

VI. CONCLUSIONS AND FUTURE WORK

Hypertension or high blood pressure is closely related

to cardiovascular disease. While continuous and portable

BP monitoring is of high importance, conventional cuff-

based BP measurement devices are primarily confined to

clinical settings. The method proposed in this paper is a cuff-

less, noninvasive and feasible method which estimates Blood

Pressure with high accuracy based on a single channel PPG

signal. PPG sensors are convenient to use, simple and low

cost, and are integrated in most of newer wearable devices.

We use Convolutional Neural Network to extract the optimal

set of features from the input, and then use a LSTM network

to capture the temporal correlations in the extracted features.

Results of the proposed method outperform previous works

that use a single channel PPG signal as input. Importantly,

the proposed method ranks as A in the BHS Standard for

both SBP and DBP, complies with the AAMI Standard, and

outperforms similar works in terms of prediction error (as

well as BHS criteria).

Importantly, the proposed method is feasible for practical

applications in commercial products. The processing power

required to execute the model (and more importantly, to keep

it updated with the new incoming data) might be too intensive

to be executed on the edge layer in an IoT architecture.

However, the raw PPG data can be transferred to the cloud,

and the prediction output can be sent back to the user through

a smart-watch or smart-phone, all in a real-time scenario. The

development of such architecture is left to future work.
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