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Abstract— In the past decades, mathematical modelers de-
veloped a huge literature to model and analyze gene networks
under both deterministic and stochastic formalisms. Such liter-
ature is predominantly focused on modeling transcriptional and
translational regulation, while the development of proper math-
ematical frameworks to model and study post-transcriptional
regulation via splicing and its connection with transcriptional
and translational regulation are almost missing. Nowadays, it is
becoming of paramount importance the need for modeling post-
transcriptional regulation via splicing especially for bacteria or
viruses. However, current literature is focused on investigating
splicing regulation at steady state and none of them have
the purpose to investigate gene networks behavior in the
frequency domain, thus providing only a partial investigation
about the system dynamical response. The aim of this work
is to theoretically investigate a simple gene network subjects
to splicing regulation with/without negative feedback control
under a frequency domain perspective. This study showed the
pivotal role of the burst size, as well as splicing conversion
rates to modulate the noise and the power spectrum response. It
also shows an interesting behavior under the frequency domain
induced by the merging effect of burst size, splicing conversion
rates and negative feedback strength.

I. INTRODUCTION

State of the art approaches to model deterministic and
stochastic gene networks focus on modelling transcriptional
and translational regulations. However, a theoretical exten-
sive investigation to deal with the post-transcriptional regula-
tion via splicing is still pretty much unexplored. As far as we
know, there are only four works that theoretically investigate
the dynamical modeling of splicing regulation at steady
state [1], [2], [3], [4]. However, such works do not account
for the investigation in the frequency domain of splicing
regulation under open loop or feedback regulation scenarios.
The stochastic analysis of gene networks is of paramount
importance for properly understanding the features of gene
expression dynamics. Moreover, it is very likely that the pre-
mRNA intrinsic stochasticity becomes relevant given that
the pre-mRNA copy number (CN) is usually very low [1].
However, understanding the steady state behavior of gene
networks does not necessarily give an exhaustive compre-
hension of their dynamical features. Frequency analysis adds
further important insights with especial regards to systems
subject to feedback control. Developing a general approach
to model post-transcriptional regulation via splicing and its
connection with transcriptional regulation has become of
great importance nowadays. This is particularly significant
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to study pathogens (e.g., bacteria and viruses). Noteworthy
is the case of modeling DNA viruses and retroviruses which
make extensive use of the splicing control. This is the case
of the HIV [6] or of the human papillomavirus (HPV) that
makes use of the splicing regulation during its entire lifecycle
[7]-[12]. This work aims at extending and studying some
preliminary works available in the literature [2], [3] about
stochastically modeling the post-transcriptional regulation
via splicing. In this work we will infer the steady state
moment behaviors of a simple splicing gene network with
and without a negative feedback regulation and we will
further investigate its behavior in the frequency domain by
the aid of the noise power spectrum analysis. As far as we
know, this is the first work that stochastically investigates the
splicing regulation under a frequency domain approach.

II. METHODS
A. Model

The major mechanisms and noteworthy features of the
gene network model are reported below and depicted in
Fig.1:
• only one mRNA isoform is spliced from the pre-mRNA.

Moreover, we made the simplifying assumption that
the mRNA coincides with its own protein, when we
consider the feedback autoregulation.

• we both consider a linear open loop model and a
negative feedback regulation of the mRNA on its own
pre-mRNA.

• stochastic bursts in the pre-mRNA expression are mod-
eled through the aid of a stochastic variable (called
Burst) that accounts for the stochastic burst size.

• the conversion of the pre-mRNA into the mRNA implies
the loss of a pre-mRNA molecule to produce an mRNA
molecule. This is one of the peculiar novelty and differ-
ences with a classical model based on the transcription
of the mRNA and its translation into a protein.

• In general, the pre-mRNA splicing gives rise to two or
more mRNA isoforms having two or more branches of
mRNAs and related proteins generated from the pre-
mRNA, as reported in some few studies [2], [3]. In
this work, we consider, for the sake of simplicity, the
splicing of just one mRNA isoform.

B. Biochemical equations

The biochemical equations related to the model in Fig. 1
are reported in Table I. The state variables of the model
are the copy numbers [CN] of the pre-mRNA (pr) and the
mRNA (m). Transition rates are reported in Table I and, in
particular: S is the synthesis of the pre-mRNA; kr, δp are the
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Fig. 1. Gene expression model. The pre-mRNA (pr) is transcribed and
subsequently spliced into a mRNA. We consider an open loop structure (A)
and a negative feedback structure (B) where the mRNA is the promoter
transcriptional regulator. ε represents the negative feedback strength. The
effects of bursts in the pre-mRNA (due to the transcription factor (TF) in
the open loop structure or due to the protein) gene expression are condensed
as a stochastic variable, called Burst, which is a re-scaling factor for the
pre-mRNA copy number, hence representing the stochastic burst size.

degradations of the pre-mRNA and the mRNA, respectively;
km is the conversion rates of the pre-mRNA into the mRNA.
The degradation rate kr accounts for the degradation of the
pre-mRNA or, alternatively, for its conversion to other,not
explicitly modeled, mRNAs (different from m). Burst is a
stochastic variable that accounts for the burst size, as further
explained in the following sections.

TABLE I
BIOCHEMICAL MODEL REACTIONS AND TRANSITION RATES

Event Update Transition rate
pre-mRNA synthesis pr → pr +Burst S(m)

pre-mRNA degradation pr → pr−1 kr pr

mRNA/protein m production

{
pr → pr−1
m→ m+1

km pr

mRNA/protein m degradation m→ m−1 δmm

C. Chemical Master Equation (CME)

The CME [13] for the entire system of biochemical
reactions, reported in Table I takes the following form

d pn

dt
=S(m)

(
pr

∑
i=0

P[Burst = i]ppr−i,m− pn

)
+ kr [(pr +1) ppr+1,m− pr pn]

+ km [(pr +1) ppr+1,m−1− pr pn]

+δm [(m+1) pm+1,pr −mpn]

(1)

where pn = P(n; t) = P(pr,m; t) represents the total joint
probability of the chemical species. The variable Burst is

a random variable, as in [2], modeling the burst size of the
pre-mRNA expression, with probability distribution

pBurst = P [Burst = i] , i ∈ N (2)

in particular, when P[Burst = 1] = 1 and P[Burst = i, i 6= 1] =
0, the pre-mRNA is under constitutive expression.

D. Differential equations of the CME statistical moments

The system of ordinary differential equations (ODEs) of
the first statistical moments takes the following form

dE [pr]

dt
= E [S(m)]E [Burst]− (kr + km)E [pr] (3)

dE [m]

dt
= kmE [pr]−δmE [m] (4)

The system of ODEs for the second statistical moments takes
the form

dE
[
p2

r
]

dt
=E [S(m)]E

[
Burst2]+2E [S(m)pr]E [Burst]

+ (kr + km)
(
E [pr]−2E

[
p2

r
]) (5)

dE
[
m2
]

dt
=kmE [pr]+2kmE [pr m]+δm

(
E [m]−2E

[
m2])

(6)

dE [pr m]

dt
=E [S(m)m]E [Burst]+ km

(
E
[
p2

r
]
−E [pr]

)
− (kr + km +δm)E [pr m]

(7)

where E[·] is the expectation operator.

It is well known that the general statistical moments,
E[xr], and correlations, E[xix j] (as in [4]) can be written as

E [xr] =
∞

∑
x=0

xr px (8a)

E [xix j] =
∞

∑
xi=0

∞

∑
x j=0

xix j pxi,x j (8b)

where px is the marginal probability of the variable x and
pxi,x j the marginal joint probability for xi and x j variables,
respectively, both derived from the total probability pn, given
from the CME. Taking the derivative on both terms of Eqs. 8
and applying the CME (Eq. 1) we can derive the general form
of the ODEs for the statistical moments and correlations (as
in [4]).

In the case of feedback regulation the synthesis rate of
the pre-mRNA, S(m) is a nonlinear function of the mRNA
regulation. Being the feedback regulation of the studied
model a negative feedback, we can consider the synthesis rate
S(m) as a monotonically decreasing function of the mRNA,
m(t). Linear noise approximation (LNA) [14] has been used
in order to linearize the pre-mRNA synthesis rate S(m)
about the steady state average number of mRNA molecules
Ess [m], as similarly done in [14], where Ess [·] stands for the
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expectation operator at steady state. LNA is valid as long as
the stochasticity in mRNA copy number is contained, i.e., the
state trajectory remains close to the steady state equilibrium.
We can apply the linear noise approximation by using Taylor
expansion of the S(m) as follows

S(m)≈ S(Ess [m])

[
1− ε

(
m(t)−Ess [m]

Ess [m]

)]
(9)

where S(Ess [m]) is the mean transcription rate, around the
equilibrium. The dimensionless constant

ε =− Ess [m]

S(Ess [m])

dS(m)

dm
|m(t)=Ess[m] > 0 (10)

represents the strength of the negative feedback induced by
the mRNA on the promoter regulation.

E. Steady state moments and correlations
In this section we report the steady state means, variances

and some correlations from the system of differential equa-
tions Eqs.3-7.

The steady state means are

Ess [pr] =
S(Ess [m])E [Burst]

km + kr
(11)

Ess [m] =
km

δm
Ess [pr] (12)

where Ess[·] stands for the expectation operator at steady
state.
The steady state variances and correlation are

Varss [pr] =

{
δm [(B+1)+ ε (ε +1)]+(B+1)(ε +1)

(ε +1)(δm + km + kr)

+
δmkrε

2

km (ε +1)(δm + km + kr)

}
Ess [pr]

(13)

Varss [m] =

{
δm (ε +1)+ km + kr

(ε +1)(δm + km + kr)

+
Bk2

m

(ε +1)(δm + km + kr)

}
Ess [m]

(14)

Covss [m pr] =

{
δm B

(ε +1)(δm + km + kr)

− ε δm (km + kr)

(ε +1)(δm + km + kr)

}
Ess [m]

(15)

where Varss[·] and Covss[·] stand for the variance and the
covariance at steady state, respectively, and where B is
defined as

B =
E
[
Burst2

]
−E [Burst]

2E [Burst]
(16)

as similarly defined in [2]. In this case, B represents a sort
of Fano factor [4] of the burst size.

Notice that, in the Eqs.13-15, we have split the steady state
second moments into two contributions, one of them related
to the Bursts through the Burst factor B.

F. Noise power spectra

In the previous sections we have derived the mean and
variance-covariance matrices in the time domain, and espe-
cially at steady state. In this section we are interested to
derive the noise power spectra of the chemical species in
order to study the system behavior in the frequency domain.
Firstly, we need to derive the autocorrelations, being the
power spectra the Fourier transform of the autocorrelations.
To calculate the autocorrelation functions we will follow the
method reported in [15]. In particular, we define the set of
correlation functions as follows

Rxix j(t) = E [∆xi(0)∆x j(t)] (17)

where xi is the copy number (CN) of a general chemical
species and where ∆xi is the instantaneous deviation away
from the steady state mean values

∆xi(t) = xi(t)−Ess [xi] (18)

The steady state variance-covariance matrix, derived in the
previous section, can be written in terms of ∆xi as follows

Covss(xi,x j) = E [∆xi∆x j] (19)

and the steady state variances are the diagonal elements of
the previous covariance matrix

σ
2
i =Covss(xi,xi) = E

[
∆x2

i
]
. (20)

Correlation functions are subject to the following properties

Rxix j(t)=Rxix j(−t), Rxix j(0)=Covss(xi,x j), Rxix j(∞)= 0.
(21)

It can be proved [15] that, for linear systems, the previously
defined correlation functions satisfy the following linear
system of ODEs

dRxqxi(t)
dt

= ∑
j

Fi jRxqx j(t) (22)

This is a particular version of a regression theorem [15],
where Fi j is the matrix of the biochemical equations transi-
tion rates. Noteworthy is that, in general, Rxix j(t) 6= Rx jxi(t)
for i 6= j, i.e., the correlation functions are not symmetric, as
proved in [15]. However, the steady state covariance matrix
is symmetric [15], hence Covss(xi,x j) = Covss(x j,xi). We
notice that the regression theorem can only be used for linear
systems. In our scenario, we can still apply the regression
theorem to the approximated version of the feedback-based
system through LNA, since it will still be linear around the
equilibrium.
To solve Eq. 22 the use of Laplace transform is the more
convenient choice, since it will lead to a simple formula
to calculate the noise power spectra without the need to
explicitly calculate the Fourier transform of the correlations.
The initial conditions will be Rxqxi(0) = Covss (xq,xi) =
Ess [xqxi]−Ess [xq] ·Ess [xi], where Ess [xi] and Ess [xqxi] are
the steady state first and second moments, calculated in the
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previous sections. By taking the Laplace transform of Eq. 22
it can be shown that

sR̃xqxi(s)−Covss(xq,xi) = ∑
j

Fi jR̃xqx j(s) (23)

where we define

R̃xix j(s) =
∫

∞

0
Rxix j(t)e

−stdt (24)

By using the previously reported theory, and take into
account that Rxix j(t) 6= Rx jxi(t) for i 6= j, we can perform the
Laplace transform of the system of the correlation functions
for the model in Fig.1

sR̃pr pr(s)−σ
2
pr =−(kr + km) R̃pr pr(s) (25)

sR̃pr m(s)−Covss(pr,m) = kmR̃pr pr(s)−δmR̃pr m(s) (26)

sR̃mm(s)−σ
2
m = kmR̃m pr(s)−δmR̃mm(s) (27)

sR̃m pr(s)−Covss(m, pr) =−(kr + km) R̃m pr(s) (28)

By solving the system of Eqs. 25-28 we obtain the
Laplace transformations of the autocorrelations of the chem-
ical species

R̃pr pr(s) =
Varss [pr]

s+ km + kr
(29)

R̃mm(s) =
Varss [m]

s+δm
+

km Covss(m, pr)

(s+ km + kr)(s+δm)
(30)

Noise power spectra can be defined as follows [15]

Sxixi (ω) = E
[
|∆xi (ω) |2

]
= 2

∫
∞

0
Rxixi(t)cos(ωt)dt, (31)

where ∆xi (ω) is the Fourier transform of ∆xi(t).
By considering the Eq. 23 and Eq. 24 it is straightforward

to prove the following formula

Sxixi (ω) = R̃xixi (iω)+ R̃xixi (−iω) . (32)

With such formula we avoid the direct calculation of the
Fourier integral.

We can now calculate the noise power spectra of the
model’s chemical species, starting from the autocorrelations
in the Laplace domain (Eqs.29,30) and inserting the steady
state variances and covariance derived in Eqs.13-15

Spr pr (ω)

Ess [pr]
=

2δmkm (km + kr) [(B+1)+ ε (ε +1)]

km (ε +1)(δm + km + kr)
[
ω2 +(km + kr)

2
]

+
2δmkm

[
δmkr ε2 + km (B+1)(ε +1)(km + kr)

]
km (ε +1)(δm + km + kr)

[
ω2 +(km + kr)

2
]

(33)

Smm (ω)

Ess [m]
=

2δm
[
(km + kr)(km (B+1)+ kr)+(ε +1)ω2

]
(ε +1)(δ 2

m +ω2)
[
ω2 +(km + kr)

2
]

(34)

G. Limit cases

In the open loop scenario, (i.e., in the limit when the
negative feedback strength ε = 0) we obtain the following
simplifying steady state variances, correlation and noise
power spectra

lim
ε→0

Varss [pr] = (B+1)Ess [pr] (35)

lim
ε→0

Varss [mi] =

{
1+

Bk2
m

(δm + km + kr)

}
Ess [mi] (36)

lim
ε→0

Ess [m pr] =
δm B

(δm + km + kr)
Ess [mi] (37)

lim
ε→0

Spr pr (ω)

Ess [pr]
=

2 (B+1)(km + kr)

ω2 +(km + kr)
2 (38)

lim
ε→0

Smm (ω)

Ess [m]
=

2δm
[
(km + kr)(km (B+1)+ kr)+ω2

]
(δ 2

m +ω2)
[
ω2 +(km + kr)

2
]

(39)

III. IMPLEMENTATION

Simulations were performed in MATLAB 2020b. All
the simulations were performed with nominal parameters
reported in Table II, unless differently specified. In the
previously discussed cases, unless differently specified, the
bursts were assumed to follow a geometric distribution of
the form:

P(Burst = r)=
1

1+E [Burst]

(
E [Burst]

1+E [Burst]

)r

, r = 0,1,2, ... .

(40)
In this particular scenario it can be proved that Burst =
E[Burst].

TABLE II
MODEL PARAMETERS

Parameters Value Unit of measure Reference
S 2

[
CNmin−1] [4]

km 0.5
[
CNmin−1] [4]

δm 0.033
[
min−1] [4]

kr 0.1
[
min−1] [4]

IV. RESULTS

From Eqs.13,14 we can notice how the higher the burst
size, B, the higher the variances of both the pre-mRNA and
the mRNA, hence the higher the stochasticity, as already
proved in [4]. However, we can notice how the higher
the negative feedback strength the higher the variance of
the pre-mRNA (Eq.13). This is because a higher negative
feedback strength ε , induces a decrease of the pre-mRNA
copy number, hence increasing the stochasticity. Moreover,
the higher the negative feedback strength, the lower the
variance of the mRNA, especially that regarded the burst
contribution (Eq.14). However, a more comprehensive study
about the noise rejection by different feedback mechanisms,
in a similar system, is already present in the literature [14],
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Fig. 2. Noise power spectra of pr pre-mRNA (A) and m mRNA (B) for
different values of the burst size, under an open loop scenario (i.e., without
feedback regulation).

Fig. 3. Noise power spectra of pr pre-mRNA (A) and m mRNA (B)
for different values of the splicing conversion rate km, under an open loop
scenario (i.e., without feedback regulation).

although it doesn’t focus on showing the derivation of the
steady state second moments and it does not discuss the
contribution of the bursts and of the negative feedback on
the steady state variances.

Let’s now focus on the frequency domain response of the
system which represents the major purpose of the current
study. By looking at the noise power spectra, for the open
loop context, we can notice how both the pre-mRNA and the
mRNA behave as low pass filters were the cutoff frequency
of the mRNA is lower than the cutoff frequency of the pre-
mRNA (Fig.2). This suggests, as well known in the literature,
that the mRNA is affected by a lower stochasticity compared

Fig. 4. Noise power spectra of pr pre-mRNA (A) and m mRNA (B) for
different values of the splicing conversion rate km, under a scenario with a
strong negative feedback regulation (feedback strength ε = 100).

to the pre-mRNA. We can also observe how the higher the
burst size, B, the higher the magnitude of the power spectra
of both the pre-mRNA and the mRNA. This proves the
quite intuitive fact that the higher the burstiness the more
amplified the stochasticity and the higher the autocorrelation
of the chemical species (Fig.2). We can also notice that for
lower frequency contents the power spectra are both affected
by the burst size, while for higher frequencies (ω > 100)
the mRNA power spectrum is invariant to the burst size
(Fig.2). This is because for higher frequencies the system
behavior is dominated by the noise related to the mRNA
conversion and degradation processes. From Fig.3 we can
observe that the splicing conversion rate, km, modulates the
cutoff frequency of the pre-mRNA frequency response but it
does not alter the cutoff frequency of the mRNA response.
However, the higher the splicing conversion rate, km, the
higher the mRNA power spectrum magnitude and the lower
the power spectrum magnitude of the pre-mRNA. Indeed,
the higher the splicing conversion rate, the lower the pre-
mRNA copy number. Similarly to what happens in Fig.2,
the power spectrum of the mRNA becomes invariant to the
splicing conversion rate for high frequencies (Fig.3B).
The pre-mRNA power spectrum magnitude is amplified by
a strong negative feedback regulation due to the consequent
decrease of the pre-mRNA abundance by the negative feed-
back control, while it strongly decreases the mRNA power
spectrum magnitude (Fig.4). In particular, for low splicing
conversion rates (e.g., km = 0.01) the power spectrum of the
mRNA peaks around intermediate frequencies (i.e., around
ω = 10−1). The latter fact suggests that for a proper window
of frequencies the noise variance will increase by the effect
of the negative feedback regulation, when the splicing con-
version rates are sufficiently small. Such effect occurs for
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Fig. 5. Noise power spectra of pr pre-mRNA (A) and m mRNA (B) for
different values of the splicing conversion rate km, for different negative
feedback regulation strengths.

sufficiently high negative feedback strengths, as shown in
Fig.5.

V. DISCUSSION

In this work we have theoretically investigated a simple
gene network related to the splicing regulation where we
have considered the conversion of a pre-mRNA into an
mRNA/protein. We have considered both an open loop and a
negative feedback regulation scenarios and we have derived
the steady state first and second moments of the pre-mRNA
and the mRNA from the Chemical Master Equation of the
gene network. We have also shown how the presence of
bursts increases the stochastic noise variance of both the pre-
mRNA and mRNA and that the higher the negative feedback
strength the higher the pre-mRNA noise variance and the
lower the mRNA noise variance. Thanks to the steady state
moments it was possible to derive the noise power spectra
of the chemical species where it was proved that the pre-
mRNA stochasticity is higher than the stochasticity of the
related mRNA. Burst size and splicing conversion rates are
key ingredients affecting both the power spectra of the pre-
mRNA and mRNA, however the frequency response of the
mRNA becomes invariant to both burst size and splicing
conversion rates for high frequencies. It was finally proved
the important action of the negative feedback regulation in
reducing the total noise of the mRNA. However, under low
splicing conversion rates, the negative feedback amplifies
the noise under a proper frequency window, as similarly
found for classical feedback regulations between mRNA and
proteins [16]. This latter fact could be justified by analyzing
the power spectra together with the system transfer function
response, as similarly done in [16]. In particular, it could be
shown that also for system subject to splicing regulation the

presence of a negative feedback reduces the system phase
margin, hence approaching system instability by the effect
of the splicing conversion rate which is diminishing. This
aspect could open future interesting investigations to better
understand the frequency domain behavior of more complex
splicing regulations, under the effect of different structures
of feedback regulations.
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[15] Warren, P., Tănase-Nicola, S., ten Wolde, P., 2006. Exact results for
noise power spectra in linear biochemical reaction networks. J Chem
Phys.125(14), 144904

[16] Simpson ML, Cox CD, Sayler GS. Frequency domain analysis of noise
in autoregulated gene circuits. Proc Natl Acad Sci U S A. 2003 Apr
15;100(8):4551-6. doi: 10.1073/pnas.0736140100. Epub 2003 Apr 1.
PMID: 12671069; PMCID: PMC404696.

[17] MATLAB. (2020b). Natick, Massachussets: The MathWorks Inc.;
2020.

4492


