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ABSTRACT

Ville Ahonen: Electroencephalography in evaluating mental workload of gaming
Master of Science Thesis
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Degree Programme in Management and Information Technology
November 2020

In this thesis, the feasibility of the electroencephalography (EEG) analysis in evaluating the
mental workload of gaming was studied, primarily by giving an overview on the related research,
and secondarily as a proof-of-concept type experiment on existing EEG recordings, with a tool
implemented for the purpose. In a relation to the EEG analysis, a selective overview on underlying
mathematical methods and techniques was given as well.

As a result of the review on various studies and their outcome, it was evident that the EEG
analysis provides a plausible means to objectively measure and evaluate mental load imposed by
gaming. The EEG indicators, that had been successfully deployed in mental load evaluation in the
reviewed studies, utilized power spectrum, event related potential and brain connectivity related
measurement methods.

In the experimental part of the thesis, a tool to process EEG signals and to calculate EEG
metrics, was implemented in Matlab environment. The existing EEG recordings (20 recordings
in total), that were used in the experiment, had been acquired by groups of students and staff
of Tampere University during n-back gaming sessions, as a part of course projects. The ratio of
theta and alpha power, calculated over the EEG signal segments that were time-locked to game
events, was selected as EEG metrics for mental load evaluation. The expectation, based on the
reviewed studies, was that the value of the calculated ratio should increase with increasing mental
load. The Wilcoxon rank-sum test was applied to test this hypothesis for the ratio values combined
from all recordings. The rank-sum test results revealed that the theta-alpha power ratio performed
as a confident indicator for the evaluation and comparison of mental load. It should be noted that
this was valid only for the frontal channels Fp1 and Fp2, of the recordings, and at the highest
game difficulty level the calculated ratio values started to appear inconsistent, which could be a
consequence of possible concentration issues, as the task became too demanding.

Keywords: EEG, electroencephalography, mental load, gaming, n-back game, EEG analysis, EEG
indicator

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Ville Ahonen: Aivosähkökäyrätutkimuksen soveltaminen kuormittavuuden arvioinnissa pelien yh-
teydessä
Diplomityö
Tampereen yliopisto
Johtamisen ja tietotekniikan DI-tutkinto-ohjelma
Marraskuu 2020

Tässä diplomityössä selvitettiin aivosähkökäyräanalyysin soveltuvuutta pelaamisesta aiheutu-
van kuormituksen arvioinnissa. Ensisijaisesti selvitys toteutettiin katsauksena aiheesta julkaistui-
hin tutkimuksiin. Tämän lisäksi työn kokeellisessa osuudessa analysoitiin olemassa olevia EEG-
rekisteröintejä tätä tarkoitusta varten toteutetun ohjelmistotyökalun avulla. Työssä myös esiteltiin
valikoidusti EEG-analyysiin liittyviä matemaattisia menetelmiä ja tekniikoita.

Useita tutkimuksia käsittäneen katsauksen perusteella oli ilmeistä, että EEG-analyysi on käyt-
tökelpoinen menetelmä pelaamisesta aiheutuvan kuormituksen objektiiviseen mittaamiseen ja ar-
viointiin. Näissä tutkimuksissa kuormituksen arvioinnissa käytetyt EEG-mittarit perustuivat joko
EEG:n tehospektriä, tapahtumasidonnaista herätepotentiaalia tai aivojen kytkeytyneisyyttä hyö-
dyntäviin mittausmenetelmiin.

Kokeellisessa osuudessa toteutettiin Matlab-ympäristössä ohjelmistotyökalu EEG-signaalien
prosessoimiseksi ja EEG-mittareiden laskemiseksi. Kokeilussa käytettiin Tampereen yliopiston
opiskelijoiden ja henkilökunnan aiemmissa kurssiprojekteissa ”n-back”-pelin pelaamisen yhtey-
dessä taltioimia EEG-rekisteröintejä, joita oli yhteensä 20. Kuormituksen arviointiin käytettäväksi
EEG-mittariksi valittiin theeta- ja alfa-taajuuskaistojen tehojen välinen suhde. Tehosuhde laskettiin
EEG-signaalin segmenteille, jotka olivat sidoksissa pelitapahtumiin. Tutkimuskatsauksen perus-
teella odotuksena oli, että tehosuhde kasvaa kuormituksen kasvaessa. Tämän hypoteesin paik-
kansapitävyyttä arvioitiin Wilcoxonin järjestyssummatestillä. Testin tulokset osoittivat, että theeta-
ja alfa-taajuuskaistojen välinen tehosuhde on varsin luotettava mittari kuormituksen arviointiin ja
kuormitusten väliseen vertailuun. Huomioitavaa on, että mitatuista EEG-kanavista tämä tulos pä-
tee ainoastaan etukanaville Fp1 ja Fp2. Lisäksi korkeimmalla pelin vaikeustasolla mittarin antamat
arvot olivat epäyhtenäisiä, mikä saattoi olla seurausta mahdollisista keskittymisongelmista pelin
vaikeustason kasvaessa liiallisesti.

Avainsanat: EEG, aivosähkökäyrä, henkinen kuormitus, pelaaminen, n-back-peli, EEG-analyysi,
EEG-mittari

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

The birth of the EEG as a scientific discipline can be dated back to the early 20th century
when Hans Berger made his first EEG recording from the human brain. His invention on
the EEG, that is, measuring the electrical activity of the brain, has been said to be "one of
the most surprising, remarkable, and momentous developments in the history of clinical
neurology" (Millet 2002). The EEG can be measured non-invasively with a portable and
relatively low-cost equipment, which makes it a highly attractive tool that is widely used
for clinical brain activity monitoring and measuring. It is a very essential and widely used
tool also in the field of the brain related research, and it has gained even more interest
during the recent years, which is reflected in the number of the EEG related publications
(Figure 1.1).

Figure 1.1. Number of EEG related publications by year (in PubMed database).

In this thesis, the application of the EEG in measuring the mental load is discussed,
in general terms and from the gaming perspective. Roughly said, the mental load is
the load that the demands of task(s) being executed impose on a person’s cognitive
resources. The EEG provides a convenient means for monitoring and evaluating the
mental load, without causing any significant interference to the subject under the study.
EEG metrics for mental load assessment can be calculated from power spectrum, event
related potential or brain connectivity measures. Gaming quite perfectly complements
the EEG in the formation of a framework for studying the mental load as, in general, load
imposing conditions in a game can be easily adjusted, and basic setups for such study
environments are rather simple.

The main goals of this thesis are the following:

1. Give an overview on scientific research related to the feasibility of EEG analysis in
the assessment of the effect of gaming on mental activity.
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2. Develop a tool for analysing multichannel biosignal recordings of gaming sessions.

3. Conduct an analysis of a set of existing recordings, taken as a part of a course
project by university students, for the detection of changes in the EEG during an
n-back memory game.

The thesis is structured as follows. The EEG basics are introduced in Chapter 2. Mental
load as such and in relation to the EEG and gaming is discussed in Chapter 3, including
an overview on related research. Some selected methods for analysing the EEG, em-
ployed in the practical work of the thesis, are described in Chapter 4. The practical part,
regarding the mental load evaluation in n-back gaming sessions, is considered in Chapter
5. Finally, the conclusion is given in Chapter 6.
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2 ELECTROENCEPHALOGRAPHY

Richard Caton (1842-1926) can be regarded as the pioneer of EEG. In 1875 he pub-
lished a short report on electrical phenomena of the brain. In his experiments he used
rabbits and monkeys and was able to measure electric currents with a galvanometer hav-
ing one electrode placed on the exposed cortex and one electrode on the skull surface.
(Niedermeyer, Schomer and Lopes da Silva 2011)

Hans Berger (1873-1941) was a German neuropsychiatrist who started studies on the
human EEG. He recorded first EEG from the human brain in 1924 during a neurosurgery
operation where the recording was made by connecting electrodes to the cortex. Later
he developed a non-invasive recording technique where electrodes were attached to the
scalp.

In 1929 Berger published his first paper on EEG (“Über das Elektrenkephalogramm des
Menschen”) where he introduced alpha and beta waves, formerly also known as “Berger
waves”. He discovered that brainwaves changed during activity and sleep. His experi-
ments became the foundation of electroencephalography which has been since then an
important non-invasive tool for better understanding the human brain and for diagnosing
cerebral abnormalities. (Sörnmo and Laguna 2005)

2.1 Origin of the EEG

Most essential building blocks of the central neural system (CNS) are nerve cells (neu-
rons) and glia cells that are located between neurons. EEG is mainly originated from
electrical activities of populations of pyramidal neurons of the cerebral cortex (Mulert and
Lemieux 2010). Each neuron consists of a cell body, several dendrites and a single axon
(Figure 2.1). The dendrites provide a neuronal reception interface and the axon transmits
electrical impulses (Byrne and Roberts 2004).

When a neuron is in resting state there are more sodium ions (Na+) outside than inside
the cell and more potassium ions (K+) inside than outside the cell which results in nega-
tive potential over the cell membrane of approximately -70 mV. Due to a stimulus, sodium
gates open and sodium ions start to flow into the cell which causes increase in the mem-
brane potential. If the membrane potential reaches the threshold (commonly about -55
mV), the voltage-gated sodium channels open, and the cell membrane becomes depo-
larized and the action potential occurs which makes the cell to fire. The action potential
is an “all or none” type phenomenon, it either happens with the full power or does not
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Figure 2.1. Neuron 1

happen at all, only depending on whether the threshold potential has been reached or
not. After reaching the peak action potential, approximately +30 mV, sodium gates close
and potassium gates open causing potassium ions to start flowing out of the cell. This
repolarization phase ends when the membrane potential is lower than the resting poten-
tial, that is, the cell membrane becomes hyperpolarized. The neuron eventually reaches
the resting potential via ion pump activity as potassium ions are pumped in and sodium
ions are pumped out. (OpenStax 2016)

The different phases of the action potential are illustrated in Figure 2.2.

Figure 2.2. The phases of the action potential 2

1https://training.seer.cancer.gov/anatomy/nervous/tissue.html
2http://neurofeedbackalliance.org/eeg-electrophysiology

https://training.seer.cancer.gov/anatomy/nervous/tissue.html
http://neurofeedbackalliance.org/eeg-electrophysiology
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2.2 Cerebral cortex

Human neurons and glia cells function quite similarly to those of other mammals. Also
most of the genes of the human neural system and those of other mammals are similar to
each other. The difference lies in how humans configure and use rather simple functional
units to achieve complex behaviour, and this complex behaviour relies especially on the
cerebral cortex (Watson, Kirkcaldie and Paxinos 2010). The cerebral cortex is a folded
sheet of neurons and glia covering the rest of the forebrain. Its surface area and thickness
are, respectively and approximately, 2500 cm2 and 2-4 mm, and it contains 109 or more
neurons (Jones 2010). In general terms, the cerebral cortex is responsible for analysing,
predicting and responding to environmental events.

The cortical surface is segmented into four lobes named after their covering skull bones:
frontal, parietal, temporal and occipital lobe (Figure 2.3). Even though this segmentation
is an anatomical one, some functionalities can be localized on the same basis, at least
roughly. For example, the visual processing is mainly executed in the occipital lobe.

Figure 2.3. Brain lobes (Watson, Kirkcaldie and Paxinos 2010)

With the aid of the microscopy and different staining techniques it can be observed that
the neurons of the cortex are arranged into six distinct layers (Watson, Kirkcaldie and
Paxinos 2010). These cortical layers are numbered from one to six starting from the
surface (Figure 2.4). The characteristics of the cortical layers are described in Table 2.1.
EEG is primarily originated from large vertically oriented pyramidal neurons located in the
cortical layers III, V and VI (Olejniczak 2006).
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Figure 2.4. Cortical layers (Kandel 2013) 3

Table 2.1. The characteristics of the cortical layers (Koeppen and Stanton 2018)

Layer Description

I Molecular layer containing few scattered neurons

II External granular layer containing mostly stellate cells

III External pyramidal layer containing predominantly
small pyramidal neurons

IV Internal granular layer containing different types of
stellate and pyramidal cells

V Internal pyramidal layer containing large pyramidal
neurons

VI Multiform layer containing few large pyramidal neu-
rons

3https://neurones.co.uk/Neurosciences/Tutorials/M4/M.4.1CerebralCortex.html

https://neurones.co.uk/Neurosciences/Tutorials/M4/M.4.1 Cerebral Cortex.html
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2.3 EEG measuring

Cerebral electrical signals recorded as EEG are oscillations composed of frequency com-
ponents varying between 0.05 and 600 Hz. Higher frequency EEG signals have typically
lower amplitude in comparison to lower frequency EEG signals. Furthermore, the spatial
extent of the EEG signal is inversely proportional to its frequency, that is, higher fre-
quency oscillations are fading faster than lower frequency oscillations when propagating
within cortical volume. Due to these signal characteristics, the EEG recorded from the
scalp is usually limited to the frequencies under about 30 Hz as higher frequency signals
are effectively attenuated by the skull and underlying tissues and they are also interfered
by non-cerebral sources like a muscle activity. (Ebersole, Husain and Nordli 2015)

Usually multiple electrodes are placed on different locations on the scalp to have better
coverage and spatial resolution when measuring EEG. Quite commonly used electrode
placement is according to the standard 10-20 measurement system. In this system,
the scalp and thus the underlying cortex as well is divided into 10% and 20% sections
between the nasion and inion, and between the left and right preauricular points, as
illustrated in Figure 2.5 (Klem et al. 1999).

Figure 2.5. The 10-20 system. Adapted from (Klem et al. 1999).

Electrode positions, with the exception of the central position, are named after cortical
lobes: Fronto polar (Fp), Frontal (F), Central (C), Temporal (T) and Occipital (O). The
number indicates the lateral position of the electrode, odd numbers are used for the left
hemisphere (Fp1, F3, F7, C3, T3, P3, T5, O1) and even numbers are used for the right
hemisphere (Fp2, F4, F8, C4, T4, P4, T6, O2). The letter "z" in vertical electrodes Fz, Cz
and Pz refers to "zero". (Klem et al. 1999)

The loose numbering used for the basic 10-20 layout allows to use the same number-
ing scheme for electrode positions in the extended layout. The modified combinatorial
nomenclature (10-10 system) increases the number of electrodes from 21 up to 74. Both
layouts are illustrated in Figure 2.6. In addition to the 10-20 and 10-10 systems also
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higher density electrode layouts are available, allowing more than 300 electrode posi-
tions. (Seeck et al. 2017)

Figure 2.6. Electrode positions. Standard 10-20 (left) and extended 10-10 (right) layouts.
(Klem et al. 1999)

EEG measuring equipment consists of electrodes, amplifiers with filters, analog-to-digital
converter (ADC) and a recording device (e.g. a laptop with an EEG recording software
installed). For multi-channel EEG measurements, electrode caps are convenient to use
as attaching and positioning multiple single electrodes would be a time consuming and
tedious task. Electrode caps have electrodes pre-installed on the cap surface, e.g. ac-
cording to the 10-20 system. (Teplan 2002)

All the electrodes are measured with respect to one common reference electrode, and
the measured analog signals are digitized via ADC. According to the Nyquist theorem,
the sampling rate of ADC has to be at least 2fmax where fmax is the highest frequency
present in the signal. The resolution of digitized signal depends on the number of quan-
tization bits. For example, with 8 bits it is possible to distinguish 255 levels within the
amplitude range. After the data acquisition, any two signals can be combined into a
derivation that means the potential difference calculation between two electrodes. As all
electrodes are measured with respect to the same reference point, it is not that relevant
which point is selected as the reference as it cancels out when bipolar derivations be-
tween two electrodes are calculated. Amplifier gain is usually preset to amplify the typical
range of input voltages to match the input range of the ADC and thus optimally exploit the
available ADC resolution. (Ebersole, Husain and Nordli 2015; Teplan 2002)

Digital recording enables post-processing of measurements. It is possible to calculate
derivation between any of electrodes and digitally filter signals after the acquisition. How-
ever, some pre-filtering for an analog signal before digitizing is needed: high-pass filtering
to reduce low frequency oscillations of non-cerebral origins and low-pass filtering to cut
off high frequencies out of interest or higher than half of the sampling rate. (Ebersole,
Husain and Nordli 2015; Teplan 2002)
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In a modern EEG equipment, data can be transferred wirelessly, e.g. over WLAN, from
the measuring device to the recording device.

2.4 Interpretation of the brain waves

EEG interpretation can be based on a pattern recognition in the measured signal. Brain
waves are commonly described by the rhythms corresponding to their frequency ranges.
These rhythms are divided into five major categories named as delta, theta, alpha, beta
and gamma (Table 2.2).

Table 2.2. Brain wave frequency ranges

Name Frequency range (Hz)

delta 0.5 - 4

theta 4 - 8

alpha 8 - 12

beta 12 - 35

gamma > 35

It should be noted that the brain wave frequency ranges are not strictly defined or stan-
dardized. Regardless of the absence of the standards, there is usually not that much
variation between the different range definitions found in the literature, except for the
gamma frequency range. However, the gamma waves are clinically not that significant
compared to the other major brain waves. Examples of brain rhythms in an EEG signal
are presented in Figure 2.7.

Figure 2.7. Examples of brain rhythms in an EEG signal.

Delta waves are commonly seen in the EEG and they can either indicate normal or ab-
normal brain function. Normal delta waves are typically found during deep sleep. (Nayak
and Anilkumar 2020)
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Theta waves are typically found in the EEG in case of drowsiness or at the early stages
of sleep and also with cognitive tasks, where it may be related to the working memory.
(Stern and Engel 2013)

Alpha waves are associated to relaxed wakefulness with eyes closed. They decrease or
disappear with drowsiness, concentration, stimulation or visual fixation. A sudden loss
of the alpha rhythm because of a visual or cognitive activity is called the alpha block-
ing (Stern and Engel 2013). The alpha rhythm is the dominant brain rhythm of adults
(Klimesch 1999).

Beta waves were named by Hans Berger after having discovered and named the alpha
waves. Originally beta waves were considered to have duration in the range of 30 to
40 ms that equals to 25 to 33 Hz in a rhythmic oscillation. Currently, beta waves are
defined as oscillations having the frequency of about 12 Hz or higher. Frontal-central
beta activity occurs most commonly with drowsiness or sleep onset, however, it has been
also interpreted to indicate cognitive processing. Even though this latter interpretation
may appear contradictory to the previous consideration of beta waves being related to
drowsiness, it may be due to the increased visibility of beta waves when other EEG
activities attenuate with alerted wakefulness. (Stern and Engel 2013)

Gamma waves are thought to be related to sensory perception, or cognitive activity, where
different functional brain areas are connected. (Nayak and Anilkumar 2020)

2.5 Evoked potentials and event related potentials

Evoked potentials (EP) end event related potentials (ERP) are transient EEG waveforms
generated by a stimulus, such as auditory or visual stimuli. The terms EP and ERP are
quite often used interchangeably in the literature, but also a more exact terminology exists
(Luck 2014) defining EP as an obligatory response to stimulus, and ERP, elicited by EP,
as a non-obligatory potential related to cognitive activity. The common categories for EPs
are visual evoked potential (VEP), auditory evoked potential (AEP) and somatosensory
evoked potential (SEP) (Sörnmo and Laguna 2005). EPs have been found useful in
practical applications, e.g. AEPs are used in monitoring the depth of anesthesia (Paulraj
et al. 2015).

EPs/ERPs are time-locked to stimulus occurrence which means they are visible in EEG
after a certain latency period. For example, the components of AEPs have the following
approximate latencies:

– brainstem AEP (BAEP): 2-12 ms

– middle latency AEP (MLAEP): 12-50 ms

– long latency AEP (LLAEP): 50-600 ms.

BAEPs are related to the activation of the acoustic nerve, MLAEPs are considered to be
generated in thalamic and cortical auditory structures, and LLAEPs reflect the activation
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of the association areas of the cerebral cortex. (Beer et al. 1996)

EPs/ERPs have a considerably low amplitude in comparison to the background EEG ac-
tivity and thus noise reduction, that is, the removal of the background EEG, is an important
issue in EP/ERP analysis. Peak wave components of EPs/ERPs are named after their
potentials, letter "P" is used for EPs/ERPs with positive potential and letter "N" is used for
EPs/ERPs with negative potential. In addition, a number after the letter is used to reflect
the latency in milliseconds after event occurrence. Alternatively, this postfix number can
reflect the timely order of the component and in that case the number is less than ten.
This short numbering convention is usually used for EPs only. For example, N2 refers
to the second negative component and P300 refers to a positive peak occurring approx-
imately 300 ms after a stimulus. As an exception to this naming rule, P3 is commonly
used instead of P300. The naming convention for EP/ERP components is illustrated in
Figure 2.8. (Sörnmo and Laguna 2005)

Figure 2.8. Visual example for naming convention of EP/ERP components (N1 = first
negative, N2 = second negative, ..., P1 = first positive, ... ). Note that potential on the
potential axis decreases in upwards direction.

2.6 Artefacts

EEG artefacts can be roughly divided into two categories: physiological and technical.
The most common sources for non-cerebral physiological artefacts are electrocardiogram
(ECG), electrooculogram (EOG) and electromyogram (EMG). Technical artefacts can be
caused by loose or poorly attached electrodes, or oscillations of 50/60 Hz originated from
powerline, for example.
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2.6.1 Sources of artefacts

ECG artefacts are caused by the electrical activity of the heart. Even though ECG am-
plitudes, when measured via EEG electrodes positioned on the scalp, are usually quite
low in comparison to EEG, they may appear as considerable disturbance at certain EEG
channels. But as heartbeat is a rhythmic and regularly occurring pattern, ECG artefacts
can be recognized and removed quite reliably from EEG. However, spiky ECG artefacts
can be incorrectly interpreted as epileptic activity in cases where ECG is hardly visible in
EEG. ECG artefact removal is potentially easier and more reliable if ECG is measured,
as a reference signal, simultaneously with the EEG measurement.

EOG artefacts are elicited by eye and eyelid movements. Eye movements can be rather
easily confused with slow EEG oscillations, whereas eyelid movements, or blinks, are
having higher frequency components (Sörnmo and Laguna 2005). For reference signal
based artefact removal methods it is beneficial to have separate electrodes placed close
to the eyes to measure EOG.

EMG reflects muscular activity. These artefacts spread over the frequency range from
0 to 500 Hz and are most dominant in 50-150 Hz range (Luca 2002). EMG artefacts
are particularly challenging to be isolated, but on the other hand they may not pose
that severe issue, as voluntary muscular activity is fairly controllable, at least in such
experiments where the subjects are requested to remain steady and relaxed.

Technical, or external, sources of EEG artefacts are various. One common source is the
movement of electrodes that may cause "electrode-pop" artefact that is visible in EEG
as temporarily changed baseline level. Other possible cause of technical artefacts is
insufficiently shielded cabling between the electrodes and the jackbox that can cause
50/60 Hz powerline interference in the EEG. As a common rule, if an artefact is visible
in a single electrode it may indicate issues with the electrode or the related cabling, or
issues with the plug-in channel to which the electrode is connected (Tatum 2014).

2.6.2 Artefact detection and removal

Artefacts in the EEG signal can be detected either manually by an expert, or automat-
ically by a detection algorithm implemented for the purpose. The most straightforward
way to process the identified artefacts is to simply discard the EEG segments containing
artefacts, but with this simple approach it is possible that also essential EEG data is lost
with discarded segments. Thus it is more desirable to develop and employ such artefact
removal methods that attempt to retain the underlying EEG, to some extent at least, while
removing the artefacts. It should be noted that the visual assessment is still needed to
ensure that automated artefact removal methods perform appropriately.

Jiang, Bian and Tian (2019) present in their review a fairly comprehensive set of applica-
ble methods of the artefact detection and removal for EEG signals. The wavelet transform
is considered in Chapter 4.2, but other than that any detailed descriptions of these meth-
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ods are not in the scope of this thesis. However, the methods presented in the review are
listed here to give an idea of the variety of the available techniques:

– Regression based methods

– Wavelet transform (WT)

– Principal component analysis (PCA)

– Independent component analysis (ICA)

– Canonical correlation analysis (CCA)

– EEG source imaging (ESI)

– Empirical mode decomposition (EMD)

– Adaptive filtering

– Wiener filtering

– Sparse component analysis (SCA)

– EMD - Blind source selection (BSS)

– Wavelet - BSS

– BSS and support vector machine (SVM)

More detailed information on these methods can be found in the review itself and in the
related references that are given in the review.
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3 MENTAL LOAD, GAMING AND EEG

Video games are usually associated with entertainment but they have also proven to be
valuable media for the mental load related research. Video game playing provides a
quite favourable environment for the EEG based mental load evaluation as a setup for
such experiments is relatively simple, affordable and portable. Also the whole interactive
environment can be created mostly in virtual terms that is an enabler for an easy variabil-
ity, e.g. the difficulty level and detail level affecting the mental load are easily modifiable.
Mental load and related indicators are discussed in the following sub-chapters, in general
terms and from the gaming perspective. The cognitive development aspect of gaming is
touched as well.

3.1 Mental workload

Definition of mental workload is not unambiguous in the literature but various proposed
definitions arbitrarily include and exclude defining variables (Acker et al. 2018). One prac-
tical attempt is to define mental workload as objective task demand imposed on a person
(Dasari, Shou and Ding 2017). As stated by Radüntz (2017), the core of this concept is
the relation between the demands of a task being executed and a person’s cognitive ca-
pacity. Human information processing capabilities are limited by the amount of available
cognitive resources, and it can be considered that the amount of task demands placed on
these limited resources corresponds to mental workload (Radüntz 2017). When person’s
cognitive resources cannot meet the demand, that is, mental load is increasing exces-
sively, it can result in degraded task performance at behavioural level, like increased
response times and erroneous responses. It should be noted that too low mental load
imposed by an actual task can degrade performance as well as it is possible that in that
kind of situation the person’s vigilance on the task is distracted more easily (Aricò et al.
2016).

3.1.1 Cognitive load theory

Cognitive load theory (CLT) approaches load definition from memory resources perspec-
tive. CLT is based on the cognitive architecture that is comprised of a working memory
that has limited capacity for temporarily storing or processing new information, and a
long-term memory that has virtually unlimited capacity (Antonenko et al. 2010; Sweller,
Merrienboer and Paas 1998). Working memory limitations for dealing with new informa-
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tion are a bottleneck as, according to Miller (1956), the working memory has the capacity
for only 7±2 information elements. Furthermore, the number of the simultaneously han-
dled information elements decreases when information also needs to be processed and
not only to be remembered (Cowan 2001). Cognitive processes can increase the pro-
cessing capacity with the help of earlier formatted patterns, categories and groupings
that ease the handling of information elements (Miller 1956). Working memory is the key
asset in multitasking (Preece, Sharp and Rogers 2015).

According to CLT, cognitive load is divided into three categories depending on its origin
(Sweller 2010):

– Intrinsic load is induced by interaction between elements a task contains. If the
number of interacting elements for the task is high, intrinsic load will be high as
well. But if the task can be accomplished without the need to process elements
dependently, intrinsic load will be low.

– Extraneous load is an unnecessary burden from the task accomplishing perspec-
tive, that is, it consumes resources without having any additional value. It may be
induced by situation, environment, time pressure or other external sources.

– Germane load refers to cognitive resources that are required to handle intrinsic
cognitive load. Germane load is placed for schema acquisition and automation.
The more working memory resources are consumed by extraneous cognitive load,
the less will be available to handle intrinsic cognitive load.

Total experienced cognitive load is a sum of intrinsic, extraneous and germane load.

In order to describe the mental workload more precisely, Xie and Salvendy (2000) pro-
posed a framework for definitions covering the following terms: instantaneous workload,
accumulated workload, average workload, peak workload and overall workload. Instan-
taneous workload represents measured or assessed load at a certain moment of time
when a task is being performed. Accumulated workload is instantaneous workload sum-
marized over a time period. Average workload is equal to the accumulated workload
divided by the duration of time over which the accumulated workload was calculated.
Peak workload is the maximum value of the instantaneous workload. Overall workload
is a subjective experience of imposed mental workload during the task execution. The
different types of mental workload are illustrated in Figure 3.1.

3.1.2 Mental workload measures

Mental workload measures can be divided into three main categories: subjective mea-
sures, performance measures and psychophysiological measures (Galy, Cariou and Mélan
2012).

For subjective measures two commonly used methods are NASA-Task load index (NASA-
TLX) (Hart and Staveland 1988) and subjective workload assessment technique (SWAT)
(Reid and Nygren 1988). NASA-TLX consists of six workload related factors: mental de-
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Figure 3.1. Mental workload types (Antonenko et al. 2010).

mand, physical demand, temporal demand, frustration, effort and performance, as sub-
jectively experienced. SWAT method is based on three subjective workload factors: time
load, mental effort load and psychological stress load. NASA-TLX has been shown to be
quite sensitive to small changes in intrinsic load (Collet, Averty and Dittmar 2009).

Performance measures are most typically based on response accuracy and response
latency. There is a certain trade-off between these two indicators. When task difficulty is
raised, latency for responses may increase due to increase in needed processing time.
However, in most cases it could be considered that correct response is more important
than low response latency if one of these needs to be sacrificed.

Psychophysiological measures are based on changes in human body at physiological or
electrophysiological level. Heart rate and respiration frequency are examples of phys-
iological variables associated with mental workload. Mental workload increases neural
activity which in turn increases metabolic demand which is then probably the cause for
increased heart rate and respiration (Hogervorst, Brouwer and Erp F. 2014). EEG is an
example of a such electrophysiological variable that is reactive to mental load changes.

3.2 Mental workload induced by video game playing

Video game playing can be a cognitively demanding task simultaneously requiring several
cognitive skills as attention, memory, decision making and alike.

3.2.1 Sources of mental load in gaming

Mental load in gaming can be induced from several sources. Direct and the most loading
source is typically game interactions, like player interacting with game environment by
controlling in-game character or performing other activities that are directly connected to
game objectives. Somewhat extraneous load can be caused by user interface that may,
for example, hold information on game character’s inventory and health, and other infor-
mation that may or may not be relevant in real-time during game playing. User interface
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related monitoring and interaction is potentially distracting player from actual playing ac-
tivities. In online games social interactions with other players increase mental load (Ang,
Zaphiris and Mahmood 2007). It is quite obvious that the amount of imposed mental load
may depend on game genre and difficulty level. According to Allison and Polich (2008),
an increase in difficulty level in a first-person shooter video game was reflected as an
increase in the experienced mental workload.

Many modern commercial video games, especially first-person shooter games, are graph-
ically highly advanced. Even though they are not quite photorealistic yet, the level of de-
tails can be remarkably high and also environmental physics are present, to some extent
at least. All this increases virtual presence which has been shown to affect experienced
mental load during video game playing, that is, the higher the virtual presence, the higher
the mental load (Schrader and Bastiaens 2012).

3.2.2 Learning in games

In-game learned and developed gaming skills have been shown to have positive effect
on cognitive load and on ability to cope with increased game challenges. Total cognitive
load is decreased when earlier learned patterns can be utilized for processing imposed
intrinsic load (Chen, Ou and Whittinghill 2015). The flow theory by Csikszentmihalyi
(1975) is applicable to gaming as well. When gaming skills and game challenge are in
balance, that is, cognitive resources are not overloaded nor underloaded, player is in the
flow state, or within the flow channel, where motivation is retained and there is a drive for
further development (Figure 3.2).

Figure 3.2. Flow channel. Adapted from (Csikszentmihalyi 1975)

If a player’s gaming skills are not in balance with the challenges imposed by the game,
i.e. the skills are significantly higher or lower than the demands, the player will drift out
from the flow channel to boredom or anxiety zone, respectively, and eventually may even
quit playing if this discomfort is prolonged.

Gaming may commonly be taken as activity for entertainment but gaming elements and
gaming itself have been also harnessed for educational purposes. Gamified learning, or
"serious gaming", is a topic of its own and as such will not be discussed in any deeper
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details in this thesis. However, some quite interesting findings have been made related
to mental workload and gamified learning that are worth to mention. Su (2015) showed
in the structural equation modelling based study that cognitive load in gamified learning
could be reduced via the proper choice of teaching strategies. Turan et al. (2016) had a
more conservative outcome in an empirical study clearly showing higher cognitive load
for the gamified learning group in comparison to the control group learning in the tradi-
tional way. Higher cognitive load in the latter study was considered to be caused by the
competitive element related to gamification. Nevertheless, in both of these studies it was
concluded that further research in the field of gamified learning is needed. It was also
evident that cognitive load plays an important role in gamified learning and it is something
that needs to be controlled in such learning environments. It is an intriguing thought if it
would be possible to develop such gamified learning environments where the same learn-
ing results can be achieved with less cognitive load in comparison to traditional learning
methods.

3.3 EEG indicators on mental workload

EEG indicators, or measurable EEG metrics, for the mental load evaluation can be based
on a power spectrum, event related potential or brain connectivity analysis. These in-
dicators are discussed in the following sub-chapters and also some related studies and
obtained results are shortly described.

3.3.1 Power spectrum

Power spectrum or power spectral density measures can be used to evaluate the signal
energy in a given frequency band. These measures are basically the main foundation for
mental load studies that assume the relation between the signal power in different EEG
frequency bands and the mental load. Power spectral density as an EEG signal analysis
tool is described in more detail in Chapter 4.1.

As discussed earlier, alpha waves are associated with relaxed wakefulness with eyes
closed and they decrease or disappear with drowsiness, concentration, stimulation or
visual fixation. This suggests that the measured signal power on alpha frequency range
(8-12 Hz) could have a relation to mental workload, higher power indicating lower load.
Activity on theta frequency band (4–8 Hz) is associated to activity on working memory.
As load imposed on working memory is directly related to increased mental load, this
suggests that theta power could reflect mental load, higher theta power indicating higher
mental load.

The assumed decrease in alpha power, i.e. alpha desynchronization, and the increase
in theta power, i.e. theta synchronization, due to increased mental load have been sup-
ported by several studies where mental load has been assessed or indicated with the aid
of EEG power spectra, such as (Palomäki et al. 2012) and (Radüntz 2017). However,
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there are also studies with partially opposite findings. Klimesch et al. (1999) found in the
memory task related study that upper alpha band power increased during the task per-
formance. This alpha synchronization was assumed to be caused by the high episodic
short-term memory load that inhibited semantic long-term memory related processes that
were found in other experiments to be related to upper alpha desynchronization.

Holm et al. (2009) presented in their study an EEG power spectrum based index for
estimating the mental load. This index was calculated as the ratio of the absolute power
of frontal theta activity to the absolute power of parietal alpha activity. It was found that
the value of the index increased when task demands increased. As such, this finding is in
line with the earlier findings, that alpha power decreases and theta power increases with
increasing mental load. However, the particularly interesting outcome of this study was
the proposed scalar index for mental load evaluation.

Klimesch (1999) proposed that instead of using fixed frequency bands for alpha and
theta, individually adjusted frequency ranges should be used in order to avoid incorrect
interpretations. Individual alpha and theta ranges are defined in a relation to the individual
alpha frequency (IAF). Based on the experiments made by Klimesch it was found that IAF
lies around 4 Hz above the transition frequency (TF) that is the intersection of the power
spectrum measured in rest and the power spectrum measured during a task performance.
Four frequency bands with the width of 2 Hz can be defined in the relation to IAF: theta
[IAF − 6Hz, IAF − 4Hz], lower-1 alpha [IAF − 4Hz, IAF − 2Hz], lower-2 alpha [IAF −
2Hz, IAF ] and upper alpha [IAF, IAF + 2Hz]. IAF, TF and alpha and theta bands are
illustrated in Figure 3.3. It should be emphasized that these frequency ranges or offsets
are not standardized which is the case for all the other major brain rhythms as well, as
discussed in Chapter 2.4.

Figure 3.3. Individual alpha frequency (IAF), transition frequency (TF) and frequency
bands. Dotted line is power spectrum measured in rest. Solid line is power spectrum
measured during task performance. (Klimesch 1999)
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3.3.2 Event related potential

ERPs (see Chapter 2.5) have been evinced as plausible indicator for mental load in
studies where stimuli or mentally loading tasks are imposed in a timely manner. The
scheduling and tracking of stimuli or task occurrences is of the essence here as ERPs
are time-locked phenomena. It is possible to evaluate mental load of the primary task di-
rectly based on ERPs evoked by the primary task execution or indirectly based on ERPs
evoked by the secondary task execution. Some studies on the ERP based mental load
evaluation are shortly viewed in the following.

Watter, G. M. Geffen and L. B. Geffen (2001) showed in the n-back memory game re-
lated study that the P300 peak latency was constant during tasks, regardless of imposed
mental load, but the P300 peak amplitude decreased when mental load increased due to
increased memory load. Intuitively or quickly thought this decrease in the P300 peak am-
plitude might appear as opposite to the expectations. The decrease in the P300 amplitude
was explained to be related to the dual nature of the n-back game. Memory requirements
in the n-back game increase when difficulty, or the value of n, is increased whereas cog-
nitive resources needed for the match making remain the same. Memorization and thus
increase in the working memory allocation was assumed to take place already before the
next stimulus onset. The P300 peak amplitude measured after the stimulus onset was
reflecting cognitive load imposed mainly by the matching evaluation. This study is an
example of ERP measurement used as the direct indicator of mental load of the primary
task performance. The n-back memory game is discussed in more details in Chapter 3.6.

Allison and Polich (2008) applied auditory stimuli as secondary task during first-person
shooter gaming sessions. Subjects were requested either to count or ignore infrequently
elicited auditory probes that were external to the game. When game difficulty was in-
creased the results showed decreased amplitudes for several ERP components (P2, N2
and P3) that were timely linked to auditory probes. It was inferred that this decrease in
the amplitudes was due to the shortage of available cognitive resources as those were
consumed increasingly by the more difficult primary task. The study represents an exam-
ple of ERP measurement of the secondary task to evaluate mental load of the primary
task.

3.3.3 Brain connectivity

Neurons and neural connections between them form a huge and complex network that
is currently beyond any practical connectivity measurements at such microscopic level.
The complexity is not only due to the huge number of neurons and connections but also
that neural connections are formed and terminated dynamically (Friston 2011; Sakkalis
2011). A practical and feasible approach is to measure brain connectivity at macroscopic
level between larger cerebral areas, e.g. between different cortical lobes. The brain
connectivity can be divided into three subcategories: neuroanatomical, functional and
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effective connectivity. According to Friston (2011) neuroanatomical connectivity can be
considered as "fiber pathways tracking over extended regions of the brain, which are in
accordance with general anatomical knowledge". However, neuroanatomical connections
as such are not essential from the EEG measurement perspective. Functional connectiv-
ity (FC) is defined as temporal and statistically significant dependency between remote
neurophysiological events (Friston 2011). Effective connectivity (EC) is defined as "the
influence that one neural system exerts over another", and it describes the directional
interactions among brain regions (Sakkalis 2011).

Cross-frequency coupling (CFC) is a phenomenon that is highly important in the EEG
based brain connectivity analysis. Basically CFC can reveal temporal interaction or link-
age between oscillations of different frequencies or frequency bands. From the brain
connectivity analysis point of view this means in simplicity that the stronger the coupling
is between the oscillations in different brain areas, the stronger these areas are con-
nected to each other, in functional sense. Any combination of frequency, amplitude or
phase can be coupled. For example, in the phase-amplitude coupling (PAC) the phase of
one frequency component modulates the amplitude of another frequency component in
the same or different signal. Various measures are available for evaluating the strength
of the coupling, such as phase-locking value (PLV) (Lachaux et al. 1999; Vanhatalo et al.
2004), envelope to signal correlation (ESC) (Bruns and Eckhorn 2004) and mean vec-
tor length (MVL) (Canolty et al. 2006). As an example of a CFC application in the load
evaluation, Gong et al. (2019) studied the relation between the mental load imposed by
action real-time strategy gaming (ARSG) and the brain connectivity, using PLV as CFC
measure. Their finding was that during ARSG session connections between the temporal
and the central area were strengthened in comparison to the resting condition.

Coherence is also widely used and important measure for the EEG based brain con-
nectivity analysis. It measures synchronization between two signals based on the phase
difference. Coherence takes higher values when there is less variation in the phase dif-
ference (Srinivasan et al. 2007). As an example of using coherence in the connectivity
based mental load evaluation, Payne and Kounios (2008) applied the wavelet transfor-
mation to calculate temporal coherence between the brain regions during altering mental
load. It was found that when memory load was increased, the coherence of theta fre-
quency band between frontal-midline and left temporal-parietal regions, as well as the
coherence of the alpha frequency band between midline parietal and left temporal/pari-
etal regions, were increased.

3.3.4 Adjustment of automation based on mental load
assessment

One prominent application for the aforementioned mental load indicators is adaptive au-
tomation (AA) (Rouse 1988). Basically AA means the adjustment of the automation level
in human-machine systems according to the mental state of an operator, that is, when
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the mental load increases excessively, the automation level is raised in order to lower or
stabilize the load. Similar kind of methodology could be applied to video gaming as well,
to keep a player engaged and motivated by adjusting game conditions in such manner
that cognitive resources are not overloaded nor underloaded. It is obvious that the men-
tal load for triggering the automated adaptation should be evaluated or classified in an
automated way and also preferably in near real-time during the task execution.

Aricò et al. (2016) studied automated mental load classification in an experiment where
air traffic controllers were performing control tasks in a simulated environment. Linear
classifier algorithms were applied to conduct the binary classification of the mental load
("high" and "low" load). These separate load classes were used to trigger AA. EEG
features used for classification were alpha and theta power spectral density measure-
ments where the frequency ranges were adjusted with the IAF (see Chapter 3.3.1). The
achieved mean classification accuracy in this study was approximately 75% (with 10%
standard deviation).

Roy et al. (2016) used also a linear binary classifier in an experiment where subjects
performed the Multi-Attribute Task Battery – II (Comstock and Arnegard 1992). In this
experiment the used EEG feature was ERP evoked by an external audio probe. Similarly
as in the already described study by Allison and Polich (2008), these ERPs evoked by
external audio probes were modulated by cognitive load and thus ERP measurements
could be used as workload indicators. The achieved mean classification accuracy was
approximately 90% (with 10% standard deviation).

Both of the studies presented above promoted the feasibility of the EEG measurement
based implementation for automated mental load classifiers. They could be also consid-
ered encouraging for further studies to apply and evaluate other classification methods
and algorithms, e.g. in an attempt to develop classifiers with finer granularity.

3.4 Gaming and cognitive skills

As discussed, video gaming is a source for mental load but there is also a cognitive devel-
opment aspect in gaming that has gained some interest in the field of cognitive research.
Video game playing might be intuitively thought as potentially beneficial for developing
cognitive skills, that is, for increasing cognitive performance. However this is not that evi-
dent when results from various studies in this field are interpreted. Improvements in visual
spatial cognition and attention can be usually more robustly related to gaming but, e.g.
for memory and general cognition, results are more complicated and general conclusions
cannot be made (Kühn, Gallinat and Mascherek 2019).

Even though various research results on the assumed positive influence of gaming on
cognitive skills may appear controversial, the visual selective attention (VSA) perfor-
mance seems quite clearly to benefit from gaming according to several studies. VSA
and two related studies, as an example and to demonstrate usable methods for VSA
performance assessment, are shortly described in the following.
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VSA means the cognitive ability to extract essential information from ample visual inputs.
The processing capacity of the human visual system would become serious bottleneck
if all visual information within the field of view had to be constantly processed. This
information overflow is blocked by VSA so that only a selection of visual inputs are allowed
to reach high-level cortical processing. (Zhang and Lin 2013)

Matern, Westhuizen and Mostert (2019) studied VSA performance between the groups of
video game players (VGP) and non-video game players (NVGP). A computerized version
of Stroop task was used to measure VSA performance of both groups. Stroop task is a
widely used method for attentional measures (MacLeod 1992). The study results showed
that there was significant difference in VSA performance between VGPs and NVGPs, in
favour of VGPs.

Green and Bavelier (2003) studied the relation between video gaming and VSA perfor-
mance with various methods. Firstly, a flanker compatibility test (Lavie and Cox 2016)
was applied to study the visual attention capacity. Secondly, an enumeration task was
performed to evaluate the capacity based on how many briefly flashed items on a display
a subject could numerate without actually counting them one by one. Thirdly, the visual
attention was tested over different viewing ranges. Lastly, an attentional blink test (Ray-
mond, Shapiro and Arnell 1992) was performed. This study was quite comprehensive
from the test repertoire point of view and all of the performed tests showed better VSA
performance for VGP group in comparison to NVGP group.

3.5 EEG in virtual reality environment

Virtual reality (VR) gaming is a rapidly expanding market. In 2019 it was valued at USD
7.7 billion and it is predicted to reach USD 42.50 billion by 2025 (Research and Markets
2020). VR gaming has also gained interest in the field of EEG related research. The
sensation of immersion and presence is stronger in VR compared to traditional presenta-
tion methods like a conventional 2D display (Buttussi and Chittaro 2018). The increased
sense of immersion may be measured objectively by EEG (Tauscher et al. 2019).

3.5.1 EEG measuring during VR session

VR gaming requires special equipment compared to the traditional gaming where a 2D
display provides visual interface and a gamepad, mouse and keyboard are the most
typical control devices. A head-mounted display (HMD) that is strapped to a person’s
head is a common consumer grade display equipment for VR setups. A hemispherical
video projection system, known as a dome, is a VR setup where no additional wearable
display is needed. It is a much higher scale setup compared to the HMD setup as the
diameter of the dome installation can be several meters.

HMD usage poses some potential impediments when EEG measurements are to be per-
formed during a VR session. HMD and EEG electrodes, or EEG electrode cap, may
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obstruct each other which can cause e.g. cable twisting and displacement of the elec-
trodes which in turn may distort EEG measurements. Tauscher et al. (2019) studied
the signal quality of EEG measurements when an EEG electrode cap and HMD were
mounted simultaneously on subjects. Their finding was that the combination of HMD and
EEG electrode cap for performing EEG measurements is feasible but without any modifi-
cations this combined equipment was experienced as non-comfortable by some subjects
and also EEG signal distortions were introduced due to pressure and cable twisting. With
the custom modification of the HMD strap, both of these inconveniences could be mit-
igated to some extent. The conclusion was that further study is needed for the proper
mounting of HMD and EEG cap simultaneously. An ideal solution could be that both the
HMD and EEG electrodes are integrated into one single device.

3.5.2 Mental load evaluation in VR environment

With VR technology it is possible to enhance computerized environments for experiments
to be more lifelike or at least to add lifelike elements, such as 3D visuals that are reactive
to head movements, which increase the presence and immersion. This certainly makes a
VR environment interesting, and potentially different compared to an non-VR (NVR) envi-
ronment, from the mental load evaluation point of view, as demonstrated by two examples
of VR related mental load studies described in the following.

Tremmel et al. (2019) conducted a study where mental load was evaluated in a VR en-
vironment. HMD and EEG electrode cap were mounted to participants who performed
n-back memory game tasks at different difficulty levels. In a virtual version of the n-back
game, different coloured balls were used as stimuli. Power spectrum analysis showed
that the discrimination of several mental load levels was possible based on the EEG
measurements in the VR environment. Interestingly, fronto-parietal alpha and theta ac-
tivations were not that constantly seen as they usually are in the corresponding mental
load studies performed in a NVR environment. Also, beta and gamma activity was more
prominent than in the related studies in NVR environments. So this study showed not
only that the mental load evaluation is feasible in a VR environment, but also that the
frequency band activity is different compared to the usual results obtained in an NVR en-
vironment. This difference was assumed to result from body movements during the test
and, somewhat more interestingly, also from rich visual input in the VR environment.

Dan and Reiner (2017) applied cognitive load index (CLI, Holm et al. (2009)) in their
study to compare mental workloads in VR and NVR environments. The content in both
environments was basically the same, a person giving instructions for a paper-folding
task. In the NVR environment the video of the instructor was shown on a 2D display
whereas in the VR environment the realistic digital avatar of the instructor was shown
in 3D. Based on the CLI measurements, the mental load was found higher in the NVR
environment than in the VR environment. One might assume quite the opposite that the
mental load would be lower in a 2D NVR environment due to less visual cues, like depth,
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to be processed in comparison to a 3D VR environment. However, if the reduced visual
cues are informative, the cognitive processes must be able to perform with increased
ambiguity which increases the mental load.

3.6 N-back memory game and EEG

The n-back memory game was introduced by Kirchner (1958) and it has been a widely
used tool since then in numerous cognitive performance related studies, especially in
those related to working memory performance and mental load.

In the n-back memory game a person is presented sequential stimuli that are perceptu-
ally identifiable, e.g. visual stimuli consisting of the set of alphanumerical characters or
auditory stimuli consisting of the set of auditory probes. The person playing the game
is requested to response, e.g. by pressing a button, when the current stimulus being
presented was presented also n items back. The matching stimulus is called the tar-
get whereas a non-matching stimulus is called a non-target. The outcome that reflects
the task performance, like the number of correct (targets) and incorrect (non-targets) re-
sponses, and the response delay, can be then used by an experimenter to further analyse
the cognitive performance. The game difficulty is controlled with the value of n, i.e. the
higher the value is, the more difficult the game becomes as it imposes higher load on the
working memory. When the value of n is zero, the stimulus used as a target is predefined.

One common variation of the n-back game is the dual n-back where two different se-
quences of stimuli are presented simultaneously. The dual task is considered an effective
tool to study the central executive system (CES). CES is considered to be responsible for
the allocation and the coordination of attentional resources and in the dual task attentional
resources are divided to different simultaneous control processes (Jaeggi et al. 2003).

In addition to its value as a tool for cognition related studies, the n-back game has been
also promoted to have positive impacts on working memory performance. Pergher et
al. (2018) made a study where they showed, based on EEG measurements for P300
component of event related potential, that n-back training improved working memory per-
formance and it also improved attention and fluid intelligence.

While n-back task has strong face validity, that is, in various experiments it has subjec-
tively seemed to measure what it is meant for, its construct validity has been argued
(Kane et al. 2007). Gajewski et al. (2018) suggested that the effect of distinct cognitive
functions related to n-back performance varies with aging. However, from the mental load
point of view, in case it is not relevant how the cognitive load is distributed over different
cognitive functions, these possible nuances may not be that meaningful in that context.

From EEG and the mental load measurement perspective the n-back game is a highly
convenient tool for experiments as mental loading can be increased or decreased easily
and in a controllable manner (by increasing or decreasing the value of n), stimulus can
be invoked temporally accurate and, in general, it takes quite low effort to be employed
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and learned. As a such right tool for the job, the n-back memory game has been used
in several EEG based mental load studies (e.g., Watter, G. M. Geffen and L. B. Geffen
(2001); Pesonen, Hämäläinen and Krause (2007); Palomäki et al. (2012); Tremmel et al.
(2019)) of which some have been already discussed in the earlier chapters dealing with
EEG indicators for the mental load.
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4 EEG ANALYSIS METHODS

In the following sub-chapters some methods and techniques used commonly in EEG
analysis are introduced. Even though this list is very far from being exhaustive, it includes
methods that have been successfully applied to the EEG analysis in the field of cognitive
performance and mental load related research, as discussed earlier, and which were
partially also seen applicable to the experimental part of this thesis (Chapter 5).

4.1 Power Spectral Density

Power spectral density (PSD) is a measure that describes how the signal power is dis-
tributed over the frequency. For PSD estimation there are two approaches, a parametric
and a non-parametric. The parametric approach is based on the assumption that a signal
is generated as an output of a linear system that is fed with white noise. If there is enough
information available on the measured signal, this assumed system can be modeled via
parameterization. An autoregressive (AR) model is quite commonly used for the para-
metric PSD estimation. Non-parametric methods have no assumptions on the underlying
model but they are based on the discrete-time Fourier transform (DTFT) of the sampled
signal.

In the following a short presentation regarding non-parametric methods is given (para-
metric methods are not considered here). First some backgrounds are briefly described,
followed by a basic introduction of non-parametric PSD methods. It should be noted that
any proofs for the presented equations are out of the scope of this thesis. The inter-
ested reader may refer, e.g. to Stoica and Moses (2005) for further information, including
parametric methods as well.

Let us assume that a deterministic discrete-time sequence { y(t) | t ∈ Z } has finite
energy, that is:

∞∑︂
t=−∞

|y(t)|2 <∞ . (4.1)

Then, a DTFT is defined for the sequence as follows:

Y (ejω) =
∞∑︂

t=−∞
y(t)e−jωt , (4.2)

where ω is the angular frequency measured in radians per sampling interval.
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Energy spectral density for this deterministic discrete-time sequence is given as:

S(ejω) = |Y (ejω)|2 . (4.3)

However, most real-world signals, like EEG, are non-deterministic by nature which means
it cannot be determined exactly how the signal varies outside the measured period(s). In
the discrete-time domain these non-deterministic signals, or random signals, can be con-
sidered as sequences of random variables. For the realizations of discrete-time random
signals the inequality (4.1) does not hold due to infinite duration and the fact that, in gen-
eral, random signals do not decay when time goes to the infinity, and thus such signals do
not possess DTFT either. Even though random signals do not have finite signal energy,
they usually do have finite average signal power.

PSD for discrete-time signals can be defined as the DTFT of the autocorrelation sequence
(ACS). The ACS for y(t) is defined as follows:

r(k) = E[y(t)y∗(t− k)] . (4.4)

In the above equation E[·] denotes an expectation operator and y∗(·) denotes a complex
conjugate of y(·).

The PSD is then defined as the DTFT of the ACS:

Φ(ejω) =
∞∑︂

k=−∞
r(k)e−jωk . (4.5)

Another definition for PSD, that is based on the assumption that the ACS converges, is
as follows:

Φ(ejω) = lim
N→∞

E

⎡⎣ 1

N

⃓⃓⃓⃓
⃓
N∑︂
t=1

y(t)e−jωt

⃓⃓⃓⃓
⃓
2
⎤⎦ , (4.6)

where N is the number of signal samples.

Theoretically PSD can be obtained by the either of the above definitions (4.5 or 4.6) but in
practice the observed number of discrete-time samples for the measured signal is limited
and thus only an estimate for PSD can be given. Periodogram and correlogram are two
common non-parametric PSD estimators derived from (4.6) and (4.5), respectively.

Periodogram is defined as follows:

Φ̂p(e
jω) =

1

N

⃓⃓⃓⃓
⃓
N∑︂
t=1

y(t)e−jωt

⃓⃓⃓⃓
⃓
2

. (4.7)
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Correlogram is defined as follows:

Φ̂c(e
jω) =

N−1∑︂
k=−(N−1)

r̂(k)e−jωk . (4.8)

The term r̂(k) in (4.8) denotes an ACS estimate, for which the standard biased version is
usually used:

r̂(k) =
1

N

N∑︂
t=k+1

y(t)y∗(t− k), 0 ≤ k ≤ N − 1 . (4.9)

Both the periodogram and correlogram provide high frequency resolution but the problem
is that the variance for the estimated PSD is relatively high, and it remains high even if the
number of the samples is increased. This high and non-controllable variance makes the
periodogram and correlogram poor PSD estimators as such, but they form a solid base
for improved non-parametric PSD estimators that have smaller variance, at the cost of
lower frequency resolution.

Windowing is a characteristic feature for the periodogram based PSD estimators. The
windowed periodogram is defined as follows:

Φ̂W (ejω) =
1

N

⃓⃓⃓⃓
⃓
N∑︂
t=1

v(t)y(t)e−jωt

⃓⃓⃓⃓
⃓
2

, (4.10)

where the weighting sequence v(t) may be called a temporal window, or alternatively, a
taper.

Some common window functions and their respective frequency responses are illustrated
in Figures 4.1 and 4.2. Two major concerns, when selecting a window function to be ap-
plied, are the width of the main lobe and the magnitude of the side lobes in the frequency
response of the window. The impact of the main lobe is that it smooths, or smears, the
estimated spectrum. Depending on the width of the main lobe it may be that peaks close
to each other in the power spectrum are estimated as one broader peak, that is, the wider
the main lobe, the lower the spectral resolution. The effect of the side lobes is that they
transfer, or leak, power from the frequency bands to adjacent bands that may contain
less, or no power at all.
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Figure 4.1. Window functions. Adapted from (Stoica and Moses 2005).

Figure 4.2. Frequency responses of window functions. Adapted from (Stoica and Moses
2005).

The Welch method is a commonly used non-parametric PSD estimate for EEG signals.
The procedure for computing the Welch estimate is as follows:

1. The signal of N samples is divided into segments of M samples. The segments are
overlapped by M −K samples (0 < K ≤M ). The total number of the segments is
then

S =

⌈︃
N −M

K

⌉︃
+ 1
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The ith segment yi(k) is obtained as:

yi(k) = y((i− 1)K + k) , (4.11)

where i = 1..S, k = 1..M .

2. The windowed periodogram (see (4.10)) for yi(t) is calculated as:

Φ̂i(e
jω) =

1

MP

⃓⃓⃓⃓
⃓
M∑︂
t=1

v(t)yi(t)e
−jωt

⃓⃓⃓⃓
⃓
2

, (4.12)

where P is defined as the power of the window v(t):

P =
1

M
|v(t)|2 . (4.13)

3. The Welch PSD estimate is then calculated as an average of the windowed peri-
odograms:

Φ̂W (ejω) =
1

S

S∑︂
i=1

ϕ̂i(e
jω) . (4.14)

As an example of the effect of applying different window functions and different window
length for PSD estimates, Welch PSD estimates for a measured EEG channel (C3) are
shown in Figures 4.3 and 4.4. The sampling rate for the EEG signal is 500 Hz and the
length of the sampled signal is 420500 samples. It can be quite clearly observed that
the PSD estimate calculated with the rectangular window makes a notable difference to
the PSD estimates calculated with the other window functions. This difference is most
notable in Figure 4.3 where the PSD estimates with the other window functions appear to
have less fluctuation. This is as expected due to the narrower main lobe of the frequency
response of the rectangular window function, resulting in the better spectral resolution,
in comparison to the other window functions. It is also clearly visible that the spectral
resolution increases in the PSD estimates with the increasing window size.
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Figure 4.3. Welch PSD estimates for the same EEG signal. Different window functions
are applied. The length of the sampled signal is 420500 samples. The windows are 128
samples wide and overlapping by 50%.

Figure 4.4. Welch PSD estimates for the same EEG signal. Different window functions
are applied. The length of the sampled signal is 420500 samples. The windows are 512
samples wide and overlapping by 50%.

4.2 Wavelet transform

In the following, an overview of wavelets and the wavelet transform (WT) is given, with
some more general background information. The discrete wavelet transform (DWT) is
considered in a relation to the multiresolution analysis (MRA) as from this viewpoint DWT
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provides a very prominent tool for the EEG analysis. For the more detailed information
and for the rigorous mathematical details and proofs, the interested reader may refer to
e.g. Haddad and Akansu (2000), S. Mallat and Peyre (2008) and S. G. Mallat (1989).

While regular Fourier transform (FT) has an excellent frequency resolution, it totally lacks
the temporal resolution. Thus FT is an inappropriate tool for analysing non-stationary
signals, if it is of importance to timely localize the frequencies in the signal. Short time
Fourier transform (STFT) applies a windowing technique that effectively divides the sig-
nal in shorter segments and thus enables time-frequency localization with the resolution
depending on the window length. However, one shortcoming of STFT is that the window
has fixed length, that is, the resolution is the same for all frequencies. WT provides an
alternative for STFT. The basis functions of WT, called wavelets, have finite support, in
contrast to the basis functions of FT, sine and cosine functions, that have infinite support.
The fundamental difference of WT in comparison to STFT is that WT uses windows, or
wavelets, of variable length, i.e. short windows for high frequencies and long windows for
low frequencies.

Heisenberg inequality states an universal physical dependency between the time and
frequency resolution:

∆t∆f ≥ 1

4π
. (4.15)

That is, it is not possible to have an arbitrarily high resolution simultaneously for both
the time and frequency, but the higher the time resolution is, the lower the frequency
resolution, and vice versa. Time-frequency resolution for STFT and WT is illustrated in
Figure 4.5. As it can be seen, for STFT the resolution remains constant for both the
frequency and time, whereas for WT the resolution is adaptive, that is, higher frequency
resolution and lower time resolution for low frequencies, and lower frequency resolution
and higher time resolution for high frequencies. This kind of adaptive nature of WT is
best suitable for analysing signals that have short bursts of high frequencies and low
frequencies of longer duration, which actually quite often is the case for practical signals,
like EEG.

Figure 4.5. Time-frequency resolution for STFT (left) and WT (right). Adapted from
(Graps 1995).
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Wavelet family is defined as follows:

ψab(t) =
1√
a
ψ(
t− b

a
) , (4.16)

where ψ(·) is called the mother wavelet from which child wavelets are generated by scal-
ing (by parameter a) and shifting (by parameter b).

Wavelet functions have to satisfy the admissibility condition, that is:∫︂ ∞

0

|Ψ(Ω)|2

Ω
dΩ <∞ , (4.17)

where Ψ(Ω) is the FT of the wavelet function ψ(t).

Some common wavelet functions are illustrated in Figure 4.6.

Figure 4.6. Examples of some common wavelet functions (Haar, Morlet and Mexican hat
wavelet).

Continuous wavelet transform (CWT) for a continuous function, or signal, x(t) is then
defined as follows:

W (a, b) =

∫︂ ∞

−∞
ψab(t)x

∗(t)dt . (4.18)

Alternatively the more compact notation can be used:

W (a, b) =< ψab, x > . (4.19)

By varying the scaling and shifting parameters throughout their respective domains, CWT
yields WT coefficients to fill the whole time-frequency plane. An illustrated example of
CWT is given in Figure 4.7.

However, CWT is not that practical signal analysis tool as it is highly redundant as both
the scaling and shifting parameters are continuous and thus the wavelets at the same
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Figure 4.7. Wavelet transform W (a, b) =< ψab, x > computed with a Mexican hat
wavelet. Black, grey and white points correspond, respectively, to positive, zero and
negative wavelet coefficients. Adapted from (S. Mallat and Peyre 2008).

scale and between the scales are significantly overlapping.

DWT provides a powerful tool for the MRA of signals. MRA is based on the signal ap-
proximations at different resolutions. The approximation of the signal x(t) at resolution
2−m is defined as an orthogonal projection of x(t) on the subspace Vm ⊂ L2(R). These
subspaces {Vm | m ∈ Z} have to satisfy the following properties:

V∞ ⊂ ... ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ ... ⊂ V−∞ (4.20)

⋂︂
m∈Z

Vm = ∅ ,
⋃︂
m∈Z

Vm = L2(R) (4.21)

x(t) ∈ Vm ⇔ x(t− 2mk) ∈ Vm, m, k ∈ Z (4.22)

x(t) ∈ Vm ⇔ x(2t) ∈ Vm−1, m ∈ Z (4.23)

and that there also exists scaling function φ(t) ∈ V0, such that

{φmn(t) = 2−m/2φ(2−mt− n)}, m, n ∈ Z (4.24)

is an orthonormal basis for Vm, that is:

< φmk, φml >= δ(k − l) , (4.25)

where δ(·) is Kronecker delta function.
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Based on (4.20), (4.23) and (4.24) the following holds for the scaling function φ(t):

φ(t) = 2
∑︂
n

h0(n)φ(2t− n) , (4.26)

where the coefficients h0(n), known as the interscale basis coefficients, define the scal-
ing function φ(t). The equation (4.26) can be called either the refinement equation, the
dilation equation or the multiresolution analysis equation.

Let Wm be a complementary subspace for Vm, such that:

Vm−1 = Vm ⊕Wm

Vm ⊥ Wm

(4.27)

From (4.27) and (4.21) it follows that:⋃︂
m∈Z

Wm = L2(R) (4.28)

It can be assumed that there exists function ψ(t) ∈ W0, such that

{ψmn(t) = 2−m/2ψ(2−mt− n)}, m, n ∈ Z (4.29)

is an orthonormal wavelet basis for Wm.

The wavelet function can be expressed as linear combination of the translates of φ(2t),
in the similar manner as the equation (4.26) for the scaling function:

ψ(t) = 2
∑︂
n

h1(n)φ(2t− n) . (4.30)

Orthogonal wavelet transform for x(t) is now defined as:

d(m,n) =< x,ψmn > . (4.31)

and orthogonal scaling transform for x(t) is defined as:

c(m,n) =< x,φmn > . (4.32)

Signal x(t) ∈ V0 can be presented, or reconstructed, as linear combination of its orthog-
onal projections:

x(t) =

∞∑︂
n=−∞

c(L, n)2−L/2φ(
t

2L
− n) +

L∑︂
m=1

∞∑︂
n=−∞

d(m,n)2−m/2ψ(
t

2m
−m) . (4.33)
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That is, x(t) is presented as approximation at scale L complemented with the sum of L
detail components at different resolutions.

Detail coefficients (4.31) and approximation coefficients (4.32) at different scales, or res-
olutions, can be obtained via dyadic half-band filter bank implementation, with downsam-
pling at each stage. In MRA terms, when a sampled signal x(t) is fed to the filter bank,
a coarser approximation and respective details of the signal are obtained at each level,
that is, effectively a signal decomposition, or MRA, is carried out. The filter bank imple-
mentation for MRA is illustrated in Figure 4.8.

Figure 4.8. Dyadic analysis filter bank implementation of DWT.

The filter coefficients h̃0 for the low-pass filter, and h̃1 for the high-pass filter are derived
from those coefficients that define the scaling function and the wavelet function in (4.26)
and (4.30), respectively, such that h̃i(n) ˆ︁=hi(−n). The latter holds as analysis filters in
this construction are anticausal.

The signal can be reconstructed from the signal decompositions via dyadic synthesis filter
bank with upsampling at each stage, as illustrated in Figure 4.9. The filter coefficients h0
for the low-pass filter, and h1 for the high-pass filter are those that define the scaling
function and the wavelet function in (4.26) and (4.30), respectively.

Figure 4.9. Dyadic synthesis filter bank implementation.

The more detailed description for the filter bank implementation can be found in Haddad
and Akansu (2000).
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As an example of the DWT based MRA, the signal decomposition for a segment of the
EEG signal measured from the C3 channel is illustrated in Figure 4.10. The sampling
rate for the EEG signal is 500 Hz.

Figure 4.10. DWT based decomposition for EEG signal (with Haar wavelet).

In the EEG signal, presented in Figure 4.10, there are clearly visible spikes, or artefacts,
that are caused by ECG. MRA provides tools for cleaning these artefacts efficiently and,
importantly, without removing the underlying EEG signal. This can be accomplished by
thresholding the detail components and then reconstructing the signal from the thresh-
olded details and the approximation, as per equation (4.33). The EEG signal before and
after the ECG artefact removal is shown in Figure 4.11. Artefact removal is one of the
most prominent applications of MRA in the EEG analysis.
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Figure 4.11. The original EEG signal (blue) and the cleaned and reconstructed EEG
signal (red).

4.3 Coherence

Coherence is a statistic that indicates whether two signals are linearly related. As dis-
cussed already earlier, it basically measures the synchronization between the signals
based on the phase difference.

The magnitude squared coherence (MSC) is defined as follows:

γ2xy(ω) =
|Sxy(ω)|2

Sxx(ω)Syy(ω)
, (4.34)

where ω is the angular frequency, Sxx(ω) and Syy(ω) are the autospectra of the signals
x and y, respectively, and that are calculated similarly as (4.5). Sxy(ω) is the cross-
spectrum between the signals x and y, defined in the similar manner as (4.5):

Sxy(ω) =
∞∑︂

k=−∞
rxy(k)e

−jωk , (4.35)

where rxy is cross-correlation function, given as follows:

rxy(k) = E[x(t)y∗(t− k)] . (4.36)

MSC gives a value between 0 and 1. The value close to 1 indicates that the signals
are strongly synchronized, whereas the value close to 0 indicates that the signals are
desynchronized.

4.4 Phase-amplitude coupling and phase locking value

As already shortly discussed in Chapter 3.3.3, CFC phenomenon provides a quite im-
portant and useful viewpoint for the EEG based brain connectivity analysis. Methods for
evaluating phase-phase and phase-amplitude couplings are presented in the following.

PLV is a measure that evaluates phase-locking between two signals, and it is calculated
according to the following procedure (Lachaux et al. 1999):

1. Two signals x and y are filtered via narrow band-pass filters (center frequencies
set to the frequencies of interest, f1 for x and f2 for y) to obtain the frequency
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components xf1 and yf2

2. For both xf1 and yf2 their instantaneous phases are obtained using the Hilbert
transform (alternatively the Gabor wavelet transform could be used in this step,
as originally suggested by Lachaux et al. (1999)): ϕ(xf1) = ϕ(H[xf1 ]) and ϕ(yf2) =
ϕ(H[yf2 ])

3. PLV between xf1 and yf2 , denoted as PLVxy, is then calculated as:

PLVxy =
1

N

⃓⃓⃓⃓
⃓
N−1∑︂
n=0

ej(ϕ(xf1
(n))−ϕ(yf2 (n))

⃓⃓⃓⃓
⃓ , (4.37)

where N is the number of the samples in the signal.

The original concept of PLV can be extended and adapted to give a similar measure for
PAC, that is, to measure the strength of the locking between the phase and amplitude of
the signals at the frequencies of interest. Typically, PAC is calculated between the phase
of a lower frequency component and the phase of the amplitude envelope of a higher
frequency component, within the same signal or between different signals (different EEG
channels, for example). The procedure to measure PAC is given as follows (Lipping et al.
2018):

1. Modulating signal x is filtered via low-pass filter to obtain the modulating frequency
component xlow

2. The instantaneous phase of the signal of the modulating frequency is obtained us-
ing the Hilbert transform: ϕ(xlow) = ϕ(H[xlow])

3. Modulated signal y is filtered via high-pass filter to obtain the higher (modulated)
frequency component yhigh

4. The amplitude envelope (denoted by ⟨·⟩) of the yhigh is obtained by calculating the
norm of the Hilbert transform of the result of step 3: ⟨yhigh⟩ = |H[yhigh]|

5. The result of step 4 is filtered via low-pass filter to obtain the low frequency compo-
nent of the amplitude envelope ⟨yhigh⟩low

6. The instantaneous phase of the low-pass filtered amplitude envelope of step 5 is
obtained using the Hilbert transform: ϕ(⟨yhigh⟩low) = ϕ(H[⟨yhigh⟩low])

7. Then the locking value for PAC, denoted as PACxy, is obtained as follows:

PACxy =
1

N

⃓⃓⃓⃓
⃓
N−1∑︂
n=0

ej(ϕ(xlow(n))−ϕ(⟨yhigh⟩low(n))

⃓⃓⃓⃓
⃓ , (4.38)

where N is the number of the samples in the signal.

PLV or PAC gives a value between 0 and 1. The value close to 0 indicates that there is
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no locking between the signals, whereas the value close to 1 indicates that the signals
are strongly locked, at the selected frequencies.
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5 EXPERIMENT ON N-BACK RECORDINGS

The practical part of this thesis is described in the following sub-chapters. Some earlier
discussed methods were applied to process EEG recordings that were acquired during
n-back gaming sessions, and to calculate EEG metrics. The processing and calculation
were performed with the software developed for the purpose.

5.1 EEG validator and calculator

One goal of this thesis was to implement a tool for filtering, cleaning and validating EEG
recordings and also for calculating EEG metrics (for the mental load evaluation) from the
processed recordings. The source code for the tool can be found in the GitHub repository
(Ahonen 2020).

5.1.1 Required functionality for the tool

EDF (European Data Format; Kemp, Värri et al. (1992)) and EDF+ (Kemp and Olivan
2003) are de-facto standards for the exchange and storage of polygraphic signals in a
digital format. EDF+ is an enhanced version of EDF supporting, for example, annota-
tions. The only incompatibility is that EDF+ supports interrupted recordings which are not
supported by basic EDF. The EDF+ header and data structure are presented in Table 5.1.
The very fundamental requirement for the developed tool was that it shall support EDF+
file format.

For the convenient processing of several recordings in one run, it was decided that the
tool shall support reading EDF file names and EEG channels to be processed from a
Microsoft Excel sheet that has been filled in by the user.

The core functionalities of the tool are the preprocessing of EEG recordings and the cal-
culation of EEG metrics that could be applied to evaluate mental load. These two aspects
are actually the main reasons why this tool was developed. The preprocessing of EEG
recordings consists of the filtering, cleaning and validation of the EEG channels included
in the recording. For the sake of flexibility and extensibility the tool shall support filter-
ing, cleaning, validation and calculation algorithms defined and implemented by the user
and provide the means to inject them with ease. The cleaning covers the detection and
removal of artefacts which, depending on the implemented cleaning algorithm(s), could
mean the zeroing of artefactual signal segments or some more sophisticated method that
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attempts to retain the underlying "real" EEG within the artefactual segments. The valida-
tion covers the detection of artefactual segments and storing of the related information,
according to the defined validation rule(s) or algorithm(s). The validation shall take place
after the signals have been cleaned. For an overall picture on the goodness or validity
of EEG channels the tool shall provide the visualization in the time domain indicating the
valid and artefactual segments. The tool shall save the cleaned recording in EDF format
to be used for the calculation of EEG metrics.

Table 5.1. EDF header and data record structure (Kemp, Värri et al. 1992).

HEADER RECORD

8 ascii : version of this data format (0)

80 ascii : local patient identification

80 ascii : local recording identification

8 ascii : startdate of recording (dd.mm.yy)

8 ascii : starttime of recording (hh.mm.ss)

8 ascii : number of bytes in header record

44 ascii : reserved

8 ascii : number of data records (-1 if unknown)

8 ascii : duration of a data record, in seconds

4 ascii : number of signals (ns) in data record

ns * 16 ascii : ns * label (e.g. EEG Fpz-Cz or Body temp)

ns * 80 ascii : ns * transducer type (e.g. AgAgCl electrode)

ns * 8 ascii : ns * physical dimension (e.g. uV or degreeC)

ns * 8 ascii : ns * physical minimum (e.g. -500 or 34)

ns * 8 ascii : ns * physical maximum (e.g. 500 or 40)

ns * 8 ascii : ns * digital minimum (e.g. -2048)

ns * 8 ascii : ns * digital maximum (e.g. 2047)

ns * 80 ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz)

ns * 8 ascii : ns * nr of samples in each data record

ns * 32 ascii : ns * reserved

DATA RECORD

nr of samples[1] * integer : first signal in the data record

nr of samples[2] * integer : second signal

..

..

nr of samples[ns] * integer : last signal
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The primary objective that was defined for the EEG metrics calculation was to support
mental load evaluation during n-back memory game sessions, based on the logged game
events. Log files that were recorded during the gaming sessions, along with EEG record-
ings, included timestamps for the game events assumed to evoke cognitive activity and
thus to increase the mental load. It was considered that annotations supported by EDF+
could be useful, at least for the manual analysis, and thus the tool shall construct EDF+
compatible annotation files for timestamped game events.

The tool can be divided into two main level logical entities: the validator covering the
preprocessing of EEG recordings and the calculator covering the EEG metrics calculation
from the preprocessed EEG recordings. This division into two entities and their related
functional requirements in the form of use cases are depicted in the use case diagrams
(Figures 5.1 and 5.2).

Figure 5.1. The validator use case diagram.
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Figure 5.2. The calculator use case diagram.

5.1.2 Programming language and runtime environment

The tool was implemented with Matlab (ML; version R2019a) as scripts that are run in
the Matlab environment. The choice of ML for a programming language and environment
was quite straightforward as, just to name a few reasons, ML provides an extensive set
of built-in functions suitable for signal processing and statistical analysis, it has been
comprehensively documented with examples, it has an active user community, and in
general, ML has proven its capabilities in a myriad of different research projects.

5.1.3 Tool architecture

Accordingly to the logical division into two main entities, the validator and the calculator,
the tool is also physically divided into two separately runnable Matlab scripts (validator.m
and calculator.m). These two scripts can be considered as the "main executables" that
gather and take control over the required classes and functions to compose a complete
end-to-end application for both the validator and calculator entities.

The implementation is partly object oriented, deploying classes, and partly procedural,
deploying direct ML function calls. Object oriented implementation supports modularity
by nature, which was seen as important property for the tool. While this mixed approach
may not be according to any commonly acknowledged good programming practices, it
was taken as it enables fast and fluent prototyping in the ML environment. For some other



46

choice of the programming language and environment this approach might not have been
feasible.

The only third-party function used in the implementation is slightly modified edfread4 for
reading EDF files, and it was also taken as basis for a new function edfsave that converts
and saves internal data structure in EDF format.

The class diagram for the tool is shown in Figure 5.3. It should be noted that the classes
implementing the abstract classes in the diagram are those that are deployed in the prac-
tical experiment (see Chapter 5.2), but they could be anything else as well, as defined
and implemented by the user, on the condition that they implement the abstract classes
as required.

Figure 5.3. The class diagram for the tool.

4https://se.mathworks.com/matlabcentral/fileexchange/31900-edfread

https://se.mathworks.com/matlabcentral/fileexchange/31900-edfread
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The basic process flow for the EEG signal validation and metrics calculation is illustrated
in Figure 5.4. As it can be seen, the flow is very lean and straightforward from end to end
with a quite minimal, if any, user intervention needed during the execution. The activities
are considered in more details in the sub-chapters 5.1.5 and 5.1.6.

Figure 5.4. The process flow for the validation and calculation.
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5.1.4 Tool configuration

User configurable parameters, including information on algorithms to be applied, are pro-
vided via the configuration files written in JavaScript Object Notation (JSON) syntax. For
example, the user can configure the duration and overlap percentage values, according
to which the EEG signals are divided into epochs that are then validated one by one. As
these files are containing plain ASCII code, they can be edited with any text editor. It is
possible to have several pre-defined configurations that can be deployed easily by chang-
ing or updating the configuration file that is read by the tool. The separate configuration
files provide some convenience to the user and allow to keep the actual ML code intact,
as there is no need to make any modifications directly to the tool itself due to configuration
changes.

The user can implement new algorithms for the filtering, cleaning, validation and EEG
metrics calculation. The algorithms are implemented as separate classes inherited from
their respective abstract parent classes, and they are deployed via the configuration files.
As an example, key-value pairs related to a band-pass filter deployment are shown in
the code snippet taken from the JSON configuration file for the validator (Code 5.1). The
snippet from the related ML code, including the constructor method PMFilter and the
method applyFilter that performs the actual filtering, is shown in Code 5.2.

1 "filters" :

2 [

3 {

4 "filter" : "PMFilter",

5 "parameters" : {

6 "type" : "'Band Pass'",

7 "frequencyBandEdges" : "[0, 1, 44, 45]",

8 "desiredAmplitude" : "[0, 1, 0]",

9 "maxAllowedDev" : "[0.05, 0.05, 0.05]",

10 "sampleRate" : "0"

11 }

12 }

13 ]

Code 5.1. Filter deployment via the JSON configuration file.
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1 methods
2 % constructor
3 function this = PMFilter(type, edges, amplitude, dev, sr)
4 this.type = type;
5 this.frequencyBandEdges = edges;
6 this.desiredAmplitude = amplitude;
7 this.maxAllowedDev = dev;
8 this.sampleRate = sr;
9 end

10

11 function filteredChannel = applyFilter(self, channel, sampleRate)
12 ...
13 [n,fo,ao,w] = firpmord(self.frequencyBandEdges,

self.desiredAmplitude, self.maxAllowedDev, sampleRate);
14 B = firpm(n,fo,ao,w);
15 filteredChannel = filtfilt(B, 1, channel);
16 end
17 end

Code 5.2. Code snippet from the PMFilter class implementation.

The tool reads the EDF files and processes the channels according to the information
given in the Microsoft Excel sheet that is created and filled in by the user and stored
in the same directory with the tool scripts. The information that the user needs to fill in
is, for example, the filenames for the EDF files and character strings indicating how the
channels in a specific EDF file are treated, that is, whether a channel contains EEG or
ECG measurements, or is to be discarded. A screenshot showing the contents of one
such configuration sheet is presented in Figure 5.5.

Figure 5.5. Screenshot from an Excel sheet containing information on EDF files.

5.1.5 Functional split for the validator

In the following the main functionalities of the validator entity are described.

Reading the configuration

At the startup the validator reads the respective JSON configuration file. Based on the
value of the control parameter zeroTouch, the validator either continues with the default
settings or asks the user for the alternative configuration file and the location of the Excel
sheet containing information on EDF files.

Reading EDF recordings

The validator creates an instance of the class ExcelRecords that forms the recording
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list containing the EDF file names and the channel specific information, as defined in
the given Excel sheet. By following this recording list, the validator reads the EDF files
and creates the Recording object, associated with the Channel objects, for each EEG
recording.

Filtering, cleaning and validation

The algorithms for filtering, cleaning and validating the EEG recordings are designed and
implemented by the user, and they are deployed via the configuration file. The validator
creates ChannelFilter, ChannelCleaner and ChannelValidator objects that are associ-
ated to their respective instances of the algorithm classes, as configured. EEG channels
in each Recording object are then filtered, cleaned and validated by executing the algo-
rithms via these objects.

Visualization of cleaned channels

After the channels in the recording have been filtered, cleaned and validated, the validator
gives the user a visual overview, in the time domain, of the validity of the channels. Those
segments that are considered as valid (non-artefactual) are presented in green colour,
and those segments that are considered as non-valid (artefactual) are presented in red
colour. An example of this visualization is shown in Figure 5.6.

Figure 5.6. The visualization of the validity of the channels. Valid epochs are marked
with green colour, and artefactual epochs with red (channels ’Ch7’ and ’ECG’ are not
processed and thus they appear valid as such).

Saving cleaned recordings and artefact data

The validator converts the filtered and cleaned recordings into EDF format and stores
them as EDF files to the disk. In addition, a data file containing information on artefactual
segments and other channel specific information is stored to be used for the EEG metrics
calculation.
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Creating annotation files

EEG recordings stored in the EDF format can be visually observed with the EDFBrowser
application that supports annotations to be shown on the top of the visualized signals.
For this purpose the validator creates annotation files that indicate game events derived
from log files recorded during gaming sessions. Annotation files follow the XML format
supported by EDFBrowser. A snippet of an XML annotation file created by the validator
is shown in Code 5.3, and in Figure 5.7 it is shown how the imported XML annotations
appear in EDFbrowser.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <annotationlist>

3 <recording_start_time>2017-04-07T13:34:13.0000000</recording_start_time>

4 <annotation>

5 <onset>2017-04-07T13:36:49.228895</onset>

6 <duration></duration>

7 <description>Displayed number 6 at </description>

8 </annotation>

9 <annotation>

10 <onset>2017-04-07T13:36:50.728980</onset>

11 <duration></duration>

12 <description>Mouse clicked at </description>

13 </annotation>

14 </annotationlist>

Code 5.3. A snippet of an XML annotation file.

Figure 5.7. Annotations shown in EDFbrowser.



52

5.1.6 Functional split for the calculator

In the following the main functionalities of the calculator entity are described.

Reading the configuration

This part is quite similar to the validator. At the startup the calculator reads the respective
JSON configuration file. Based on the value of the control parameter zeroTouch, the
calculator either continues with the default settings or asks the user for the alternative
configuration file, and the location of the EDF files containing the EEG recordings for
which the EEG metrics are calculated.

Reading cleaned EDF recording and data files

The calculator lists all the EDF files found in the given directory (and in its all sub-
directories) and creates Recording object for each recording. The created objects are
complemented with the channel specific data that is read from the related data files con-
structed and stored by the validator.

Reading the game events

The calculator reads the log files that have been stored during n-back game sessions and
derives the following information to be stored into an internal data structure:

– the current value of n

– timestamp when a number was displayed

– whether the mouse was clicked

– the delay between the number displayed and the mouse clicked

– whether the displayed number was the target or a non-target.

A snippet of an n-back game log file is shown in Code 5.4.

Recording started at 2017-04-07 13:34:16.975186

Deep breathing started at 2017-04-07 13:34:37.073336

1-back game started at 2017-04-07 13:36:44.652633

Displayed number 0 at 2017-04-07 13:36:45.177663

Displayed number 6 at 2017-04-07 13:36:47.201779

Displayed number 6 at 2017-04-07 13:36:49.228895

Mouse clicked at 2017-04-07 13:36:50.728980

Code 5.4. A snippet of an n-back game log file.

The stored game session specific data, that is related to the certain EEG recording, can
be then used for calculating the game event related EEG metrics.

Validating the game events

By comparing the timestamps of the artefactual EEG segments and the game events, the
calculator discards the events that are overlapping with the artefactual segments, that is,
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those events are not considered as valid for the EEG metrics calculation.

EEG metrics calculation

The algorithms for calculating the EEG metrics are designed and implemented by the
user, and they are deployed via the configuration file. These calculation algorithms have
to implement the methods inherited from the abstract parent class, that is, each child
class has to have the methods to calculate the metrics for the single events, for the
channels and for the whole recording. Depending on the case, it may be that it is not
reasonable, or feasible, to calculate the metrics for all the different levels, and in that case
"dummy" implementation(s) might be needed.

The calculator creates the NBackCalculator object that is associated to the instances of
the algorithm classes for the EEG metrics calculation, as configured. The EEG metrics,
related to the logged game events, are then calculated for each Recording object (at the
recording, channel or event level) by executing the algorithms via the NBackCalculator
object. The results are stored into the internal data structure that is also saved to the
disk.

5.2 The n-back experiment

In the following, the experimental part of this thesis, that is, the employment of the devel-
oped tool for the EEG signals processing and mental load evaluation in n-back gaming
sessions, and the analysis of the results, is described. The EEG measurements and stim-
uli related data used in this experiment were acquired by groups of Tampere University
students and staff, as a part of course projects during the years 2019 and 2020.

5.2.1 The setup and procedure

The test setup for course projects was comprised of the following components:

– a laptop

– n-back game and EEG recording software running on the laptop

– an EEG electrode cap with a measurement unit connected wirelessly to the laptop.

The n-back game involved simple visual stimuli as single digits (0-9) displayed on the
computer screen in 2-3 second intervals. The subjects were supposed to click the mouse
button when a displayed number was the target. The gaming sessions were always
started with 1-back, proceeding up to 4-back, with a short break between the levels. The
duration for each level was a few minutes. All game events during the sessions, i.e. n-
back game level changes, displayed numbers and mouse clicks, were logged and stored
to the disk in the log file format presented in Chapter 5.1.6.

The EEG during the n-back gaming sessions was measured and recorded with Enobio®

(Neuroelectrics, Spain) EEG system. The version of the measurement device that was
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used in the course projects carried out in 2019 supported up to 8 channels, and the
version used in the projects in 2020 supported up to 20 channels.

In total, the projects covered 20 n-back gaming sessions, for which the EEG measure-
ments and game events related data were recorded. A setup with 6 connected EEG
channels was used in 18 of these sessions, and a higher density setup with 19 con-
nected EEG channels in two of the sessions. The EEG signal sampling rate was 500 Hz
for all recordings, and in all cases the ECG was recorded simultaneously with the EEG.
The connected EEG channels in both the 6-channel and 19-channel setups are shown
in Table 5.2. The channels in the 6-channel setup are a subset of the channels in the
19-channel setup.

Table 5.2. 6-channel and 19-channel setups.

Setup Connected EEG channels

6-channel Fp1, Fp2, C3, C4, O1, O2

19-channel Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2

5.2.2 The EEG processing

The provided EEG recordings were preprocessed with the validator tool, that is, all EEG
channels in all EEG recordings were filtered, cleaned and validated, in this order, by the
respective algorithms that are described in the following.

Built-in ML functions firpmord and firpm are applied in the implemented filtering algorithm
(PMFilter ) to design a bandpass filter. The bandpass filter was deployed with the lower
cut-off frequency set at 1 Hz and the upper cut-off frequency at 44 Hz.

The implemented artefact cleaning algorithm (AlgWaveletCleaner ) employs DWT based
MRA, by the application of ML functions wfilters and modwt. The cleaning algorithm
was deployed with the low-pass and high-pass decomposition and reconstruction filters
(see Chapter 4.2) associated with the ML pre-defined wavelet "db2" from the Daubechies
wavelet family. With this setting, the AlgWaveletCleaner algorithm executes MRA decom-
position for the EEG signals, and thresholding for the decomposed detail components.
The thresholding is carried out in the manner that samples of the detail components are
zeroed if they have an amplitude higher than 2.5 times the standard deviation calculated
over the sample window of duration of 10 seconds, and which is moved in the 5 second
intervals. This kind of less frequently moved window gives a remarkable performance
gain in comparison to a window that is moved for each sample, without excessively losing
the accuracy in this case. After the thresholding, the inverse DWT, via the ML function
imodwt, is performed to reconstruct the (cleaned) EEG signal.

The implemented validation algorithm (AlgChannelValidator ) loops through the channel
specific EEG signal segments, or epochs, and compares the average power of each
epoch to the average power of the whole channel. If the average power of an epoch is
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more than two standard deviations away from the average channel power, the epoch is
marked as invalid and will be omitted in the EEG metrics calculation. The epoch length
was set to one second (500 samples at 500 Hz sampling rate), with 50% overlap between
adjacent epochs.

5.2.3 The EEG metrics calculation

The EEG metrics were calculated with the calculator tool, after the recordings were first
preprocessed with the validator tool, as described in the previous section. The selected
EEG metrics for mental load evaluation, and the implemented algorithm to perform the
needed computations are described in the following.

Different EEG indicators for mental load evaluation were discussed in Chapter 3.3. In
this experiment the power spectrum based approach was chosen, by following the CLI
method introduced by Holm et al. (2009), with such adaptation that instead of calculating
the ratio of theta and alpha power between the EEG channels, the ratio was calculated
within each EEG channel. According to its definition, CLI is calculated between the Fz
and Pz channels, which suggests that these channels could be feasible candidates for
intra-channel power ratio calculations as well. However, in this experiment the parietal
channels were not measured, except in two cases, and the power ratio was calculated for
all the measured channels that were common for all recordings (Fp1, Fp2, C3, C4, O1
and O2).

The implemented EEG metrics calculation algorithm (AlgPowerRatioCalculator ) com-
putes the theta and alpha power ratio (TAPR) for EEG signal segments that are time-
locked to n-back game events. The measurement interval, or the event segment, over
which TAPR is calculated, was configured to start 100 ms prior to a number is displayed,
with the total duration of 1000 ms (500 samples at 500 Hz sampling rate). The AlgPower-
RatioCalculator algorithm calculates an event segment specific theta (4-8 Hz) and alpha
(8-12 Hz) power by the application of the Welch’s PSD estimate using the ML function
pwelch. TAPR is then obtained as the ratio of the PSD estimates for the theta and alpha
frequency ranges summed over their respective frequency bins. The algorithm discards
those event segments that overlap with invalid EEG signal segments, as indicated by
the validator tool. The Hamming window of length 128 samples, with the overlap of 64
samples, was applied in the PSD estimates.

5.2.4 Results and analysis

TAPR values, related to n-back game events, were calculated per n-back game level
for each channel in each recording. Outliers in these channel and recording specific n-
back level sets were removed by employing the median absolute deviation (MAD) method
(Leys et al. 2013). MAD value is defined as the median of the deviations from the median,



56

adjusted with a scale factor:

MAD = b ·Median(|Xi − X̃|) , (5.1)

where X̃ is the median of the data set X, Xi represents individual values within this set
and b is the scale factor (of value 1.4826, see (Leys et al. 2013) for details).

TAPR values more than three MAD values away from the median were considered as
outliers. The results for each recording are shown in Figures 5.8, 5.9 and 5.10, where the
recordings have been named after the identifiers of their respective project groups. The
dashed lines mark the n-back game level specific thresholds for removing outliers (values
above the threshold), when TAPR values for all recordings are combined in the channel
specific n-back game level bins, as discussed later. The 19-channel setup was used in
the recordings 20G6a and 20G6b, and the 6-channel setup in the rest.

Figure 5.8. Theta-alpha power ratio (TAPR) of channels Fp1 and Fp2 of all recordings,
for n=1,2,3,4. Thresholds for removing outliers per n-back game level specific bins, when
the results are combined, are marked with the dashed lines. Thresholds for Fp1: 12.84
(1-back), 20.59 (2-back), 28.11 (3-back), 27.30 (4-back), and for Fp2: 13.24 (1-back),
20.97 (2-back), 28.45 (3-back), 28.67 (4-back).

Based on the boxplot visualizations (Figures 5.8, 5.9 and 5.10), some recordings, e.g.
20G2b and 20G3 for the Fp2 channel, hold apparently higher TAPR values in compari-
son to other recordings. This could be due to individual divergence either in the theta or
alpha activity, or in the both. Other reason could be a lack of concentration on the task
execution, as these course project related measurements were not performed in strictly
controlled circumstances. Artefacts may also contribute to these deviations, as the proto-
typed artefact removal algorithm was probably not capable of removing all the significant
artefacts.
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Figure 5.9. Theta-alpha power ratio (TAPR) of channels C3 and C4 of all recordings,
for n=1,2,3,4. Thresholds for removing outliers per n-back game level specific bin, when
the results are combined, are marked with the dashed lines. Thresholds for C3: 7.68
(1-back), 9.21 (2-back), 9.47 (3-back), 9.88 (4-back), and for C4: 7.67 (1-back), 8.90
(2-back), 9.27 (3-back), 9.40 (4-back).

Figure 5.10. Theta-alpha power ratio (TAPR) of channels O1 and O2 of all recordings,
for n=1,2,3,4. Thresholds for removing outliers per n-back game level specific bin, when
the results are combined, are marked with the dashed lines. Thresholds for O1: 5.81
(1-back), 6.29 (2-back), 6.62 (3-back), 6.69 (4-back), and for O2: 7.51 (1-back), 7.46
(2-back), 7.74 (3-back), 9.02 (4-back).
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As discussed earlier, the higher the value of n is in the n-back game, the higher the
imposed mental load, and the increase in the mental load should be reflected in the EEG
as increased theta power and decreased alpha power. The Wilcoxon rank-sum test was
conducted to test this hypothesis from TAPR perspective. The null hypothesis (H0) and
alternative hypothesis (H1) were formulated as follows:

H0 : µ̃x = µ̃y

H1 : µ̃x < µ̃y ,

where µ̃x is the median of TAPR values calculated from EEG measurements during an
n-back game session at level x, µ̃y is the median of TAPR values calculated from EEG
measurements during an n-back game session at level y, and x < y.

The channel specific TAPR values for the same n-back game level were combined from
all recordings, and the MAD method was applied to remove outliers from these n-back
specific bins. The combined TAPR values are shown in Figure 5.11. The thresholds,
above which the TAPR values were removed as outliers, are illustrated with dashed lines
in Figures 5.8, 5.9 and 5.10.

Figure 5.11. Theta-alpha power ratio (TAPR) of all channels of combined recordings, for
n=1,2,3,4. The median of TAPR for each n-back level is given in parenthesis.

The left-sided Wilcoxon rank-sum test was separately performed for each pair of the n-
back levels of the combined TAPR values. The p-values corresponding to the obtained
rank-sum statistics are listed in Table 5.3. For the reference, the p-values for the rank-sum
tests performed separately for each recording are given in Appendix A.
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Table 5.3. P-values for TAPR comparison between different n-back levels (left-sided
Wilcoxon rank-sum test).

Channel 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 <0.001 <0.001 <0.001 <0.001 <0.001 0.177

Fp2 <0.001 <0.001 <0.001 <0.001 <0.001 0.055

C3 <0.001 <0.001 <0.001 0.203 0.217 0.520

C4 <0.001 <0.001 <0.001 0.451 0.825 0.884

O1 <0.001 <0.001 <0.001 0.108 0.404 0.839

O2 0.048 0.001 <0.001 0.070 <0.001 <0.001

It is visible in the boxplot presentations (Figure 5.11) that the differences between the
medians of TAPR values for different n-back levels are highest in the Fp1 and Fp2 chan-
nels, whereas the medians in all the other channels reside on an almost flat line. This
better TAPR performance for the Fp1 and Fp2 channels is evident by statistically signifi-
cant p-values (Table 5.3), at the significance level 0.001, for TAPR comparison between
each pair of n-back levels, except between the 3-back and 4-back. Although there are
significant p-values for n-back comparisons in the other channels as well, they are not
as dominant as in the Fp1 and Fp2 channels. TAPR values calculated for 4-back game
events may not be that consistent in comparison to the results obtained from the lower
n-back levels, as the n-back game at level 4 becomes so demanding, that it may start to
cause concentration issues that disturb the evaluation.

ROC curves for TAPR performance in the different channels, and between the different
n-back levels, give another visualization that also supports the better performance of the
Fp1 and Fp2 channels (Figure 5.12).

To shortly summarize the presented observations and analysis, TAPR measure for the
frontal EEG channels Fp1 and Fp2 seems to provide a plausible EEG indicator for mental
load evaluation and comparison. This is aligned with the earlier discussed studies that
indicate the theta synchronization and alpha desynchronization with increasing mental
load. However, in an attempt to obtain more consistent and less divergent series of
TAPR results between different recordings, more measurements should be performed in
a controlled environment, and also other variations and methods for the artefact removal
should be studied and experimented, including the visual assessment by an expert.
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Figure 5.12. Channel specific ROC curves for TAPR measures between the different
n-back levels.
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6 CONCLUSIONS

Three main objectives were set for this thesis. The first one was to give a literature
based overview on the feasibility of the EEG analysis in evaluating the mental workload
of gaming. To start with, the fundamental questions to be covered were how the mental
workload is defined and what are the mental workload measure types. In simple terms,
mental workload can be considered as an objective task demand imposed on a person’s
cognitive resources. CLT provides a more profound theoretical framework, that is based
on the cognitive architecture comprised of a working memory and a longterm memory,
and that specifies mental workload according to its origins (intrinsic, extraneous or ger-
mane workload). The measures for mental workload can be divided into the categories
of subjective measures, performance measures and psychophysiological measures. The
EEG represents an indicator belonging to the last category. The reviewed studies indi-
cate that gaming is a diverse source of mental workload, as one might intuitively assume,
and mental workload imposed by game playing is usually fairly controllable, and the se-
tups as such are simple and affordable. These aspects promote gaming as a favourable
setting for mental load related studies. Furthermore, based on the reviewed studies, it is
evident that the application of EEG analysis in evaluating mental load is highly feasible,
and provides consistent and reproducible results that are in accordance to the expecta-
tions. One of the most important observations, that emerged in multiple studies, is the
decrease in alpha activity and the increase in theta activity, with increasing mental load.
This phenomenon was also an essential driver for the experimental part of this thesis.
While in most of the reviewed studies mental workload evaluation was performed in NVR
environments, some recent studies in VR environments have shown promising results on
the feasibility of the EEG based mental workload analysis also in such more advanced
environments.

The second objective was to develop a tool for analysing multichannel biosignal record-
ings of gaming sessions. The working prototype was implemented in ML environment.
The chosen programming paradigm was a mixture of object-oriented (OO) and proce-
dural programming. The modularity is an important property for the developed software,
and OO approach is a natural enabler for modularity via the class based implementation.
On the other hand, ML provides plenty of built-in functions that can be called directly,
which justifies a partly procedural approach for fast prototyping. The main reason behind
the modular design was to provide a user a convenient means to deploy new algorithms
for the EEG processing and metrics calculation. The implemented algorithms for filtering,
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cleaning and validating EEG signals, as well as for calculating the EEG metrics, were
described in Chapter 5.2. According to the conducted experiments, the tool processes
EEG signals and calculates EEG metrics as expected, and thus clearly fulfills the defined
functional requirements. For future improvements, the program code could be investi-
gated for further optimizations, as execution times might become an issue, if the tool
needs to be run frequently, and for several recordings in one go. With the current sys-
tem used in the experiment (CPU: Intel Core i5-7200U 2.50 GHz, memory: 8 GB DDR-4
2133 MHz, operating system: Windows 10 Professional 64-bit), and with the currently
implemented algorithms, the validation for 20 EEG recordings, of the average length of
roughly 15 minutes, took approximately 18 minutes, and the metrics calculation (TAPR)
took approximately 10 minutes. Other improvements could be a graphical user interface,
including parameter configuration, a built-in analysis section for providing statistics and
graphs derived from the calculated metrics, and configurable game events, or character
strings, to define triggering points for metrics calculation, also other than those based on
n-back game log files.

The third main objective was to analyze a set of existing recordings for the detection of
changes in the EEG during an n-back memory game. The setup, procedure, metrics cal-
culation and analysis of results were described in details in Chapter 5.2. As a summary,
the calculated TAPR metrics, for the frontal channels Fp1 and Fp2, seemed to provide
meaningful results in order to evaluate and compare the mental workload imposed by
the n-back game at different difficulty levels. However, for some recordings, remarkably
high divergences in TAPR values were observed, in comparison to other recordings. This
finding raises an obvious need for further acquisition of measurements, under strictly
controlled conditions, and also for designing and experimenting efficient artefact cleaning
algorithms. In addition, other EEG metrics than TAPR could be evaluated, e.g. those dis-
cussed in Chapter 3.3. A version of calculation algorithm for PAC metrics was preliminary
tested. However, the initial results did not reflect the changes in mental workload, at least
not as expected, but this is something that should be studied and experimented further.
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A P-VALUES SEPARATELY FOR EACH
RECORDING AND EACH CHANNEL

Table A.1 lists the p-values corresponding to the left-sided Wilcoxon rank-sum statistics
of TAPR comparison between the different n-back levels, separately for each recording
and each channel.

Table A.1. P-values related to TAPR comparison between the different n-back levels

19G1 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.05 0.13 0.01 0.64 0.6 0.42

Fp2 0.12 0.32 0.05 0.51 0.84 0.37

C3 0.2 0.04 0.03 0.64 0.69 0.86

C4 0.04 0.02 < 0.01 0.84 0.46 0.47

O1 0.37 0.14 0.25 0.73 0.85 0.7

O2 0.07 0.07 0.13 0.9 0.59 0.76

19G10 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.12 < 0.01 < 0.001 0.15 < 0.001 < 0.001

Fp2 < 0.001 < 0.01 < 0.001 0.4 < 0.001 < 0.001

C3 0.01 < 0.001 < 0.001 0.19 0.1 0.61

C4 0.02 0.31 < 0.001 0.28 < 0.001 < 0.001

O1 < 0.001 < 0.001 < 0.001 0.17 0.42 0.03

O2 0.15 < 0.001 < 0.001 < 0.01 < 0.001 0.17

19G11 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.23 0.25 < 0.01 0.98 0.03 0.04

Fp2 0.37 0.37 < 0.01 0.92 0.04 0.06

C3 < 0.01 < 0.01 < 0.01 0.98 0.84 0.96

C4 0.01 < 0.01 0.1 0.56 0.68 0.51

O1 < 0.001 0.07 < 0.01 0.01 0.65 0.16

O2 0.6 < 0.01 0.11 < 0.01 0.03 0.25

Continues on the next page
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19G2 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.31 0.63 0.11 0.07 < 0.001 0.14

Fp2 0.07 0.87 0.45 0.05 0.14 0.44

C3 0.25 < 0.01 < 0.001 < 0.001 < 0.001 0.59

C4 0.04 < 0.001 < 0.001 < 0.001 < 0.001 0.01

O1 0.7 < 0.01 < 0.01 < 0.001 < 0.001 0.43

O2 0.33 < 0.01 < 0.01 < 0.01 < 0.001 0.43

19G3 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 < 0.01 < 0.001 < 0.001 < 0.001 0.05 0.1

Fp2 0.01 < 0.001 < 0.001 < 0.001 0.07 0.05

C3 0.09 0.71 0.66 0.11 0.01 0.31

C4 0.02 0.56 0.31 0.11 0.17 0.87

O1 < 0.01 0.05 < 0.01 0.55 0.95 0.51

O2 < 0.01 < 0.01 < 0.01 0.9 0.85 0.73

19G4 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 0.08

Fp2 < 0.01 < 0.001 < 0.001 < 0.001 < 0.01 0.03

C3 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 0.73

C4 0.02 < 0.001 < 0.001 < 0.001 < 0.01 0.57

O1 0.03 < 0.001 < 0.001 < 0.01 < 0.001 0.05

O2 0.01 < 0.001 < 0.001 0.09 < 0.01 0.21

19G5 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.65 0.04 0.21 0.08 0.43 0.4

Fp2 0.34 0.06 0.23 0.37 0.77 0.5

C3 0.02 0.3 0.37 < 0.01 < 0.01 0.77

C4 < 0.01 0.03 < 0.01 < 0.001 < 0.001 0.45

O1 0.34 0.4 0.33 0.95 0.95 1

O2 0.96 0.16 0.45 0.17 0.51 0.07

19G6 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 < 0.001 < 0.001 < 0.001 0.04 < 0.01 < 0.001

Fp2 < 0.001 0.03 < 0.001 0.02 < 0.01 < 0.001

C3 < 0.001 < 0.001 < 0.001 0.44 < 0.01 0.02

Continues on the next page



72

Table A.1 – Continued from the previous page

C4 < 0.001 < 0.001 < 0.001 0.75 < 0.01 < 0.01

O1 < 0.001 < 0.001 < 0.001 0.25 0.32 0.95

O2 < 0.001 < 0.001 < 0.001 0.73 < 0.01 0.01

19G7 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.02 < 0.001 < 0.001 0.04 0.02 0.87

Fp2 < 0.01 < 0.001 < 0.001 0.01 < 0.01 0.63

C3 0.02 0.47 0.02 0.1 0.69 0.04

C4 0.85 < 0.001 < 0.001 < 0.001 < 0.001 0.78

O1 < 0.01 < 0.001 < 0.001 0.64 0.74 0.93

O2 0.01 0.03 0.22 0.48 0.15 0.27

19G8a 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.08 < 0.001 < 0.001 0.02 < 0.001 0.12

Fp2 0.07 < 0.001 < 0.001 < 0.01 < 0.001 0.29

C3 < 0.001 < 0.001 < 0.001 0.34 0.82 0.6

C4 < 0.001 < 0.001 < 0.001 0.26 0.53 0.13

O1 < 0.001 < 0.001 < 0.001 0.69 0.42 0.72

O2 < 0.001 < 0.001 < 0.001 0.8 0.08 0.1

19G8b 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.54 0.08 < 0.001 0.35 < 0.001 < 0.001

Fp2 < 0.01 < 0.001 < 0.001 0.64 < 0.01 < 0.001

C3 0.43 0.02 < 0.001 0.09 < 0.001 < 0.01

C4 0.05 0.27 < 0.001 0.28 0.06 < 0.01

O1 0.17 < 0.01 < 0.001 0.01 < 0.001 0.06

O2 0.15 0.07 < 0.01 0.88 0.09 0.1

19G9 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 0.07 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Fp2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

C3 < 0.001 < 0.001 < 0.001 < 0.01 < 0.001 0.21

C4 0.62 < 0.001 < 0.001 < 0.001 < 0.001 0.61

O1 0.8 < 0.001 < 0.001 < 0.001 < 0.001 0.06

O2 0.44 0.76 0.18 0.63 0.49 0.24

20G1 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4
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Fp1 0.09 0.03 0.29 0.84 0.38 0.21

Fp2 0.25 0.22 0.19 0.97 0.95 0.86

C3 0.91 0.37 0.16 0.26 0.13 0.72

C4 0.61 0.5 0.61 0.17 0.95 0.25

O1 0.55 0.24 0.46 0.71 0.91 0.74

O2 0.27 0.28 0.84 0.92 0.45 0.46

20G2a 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 < 0.001 < 0.001 < 0.001 0.58 0.27 0.59

Fp2 < 0.001 < 0.001 < 0.001 0.95 0.27 0.22

C3 < 0.001 < 0.001 < 0.001 0.31 0.28 0.78

C4 < 0.001 < 0.001 < 0.001 0.27 0.5 0.1

O1 0.47 < 0.001 0.13 < 0.001 0.34 < 0.01

O2 < 0.001 < 0.001 < 0.001 0.78 < 0.001 < 0.001

20G2b 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 < 0.001 < 0.001 < 0.001 0.81 0.46 0.31

Fp2 0.18 0.14 0.03 0.95 0.44 0.47

C3 0.02 0.1 0.03 0.48 0.93 0.49

C4 < 0.001 < 0.001 < 0.01 0.54 0.9 0.48

O1 0.01 < 0.001 < 0.001 < 0.001 < 0.001 0.87

O2 < 0.001 0.31 0.09 < 0.001 < 0.001 0.36

20G3 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.01 0.87

Fp2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.47

C3 < 0.001 < 0.01 0.03 0.04 < 0.01 0.59

C4 < 0.001 < 0.001 < 0.001 0.12 0.08 0.87

O1 < 0.01 0.01 0.22 0.38 < 0.001 < 0.001

O2 < 0.001 < 0.01 0.28 0.16 < 0.001 0.04

20G4 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.01

Fp2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.06

C3 0.02 0.01 < 0.001 0.46 < 0.01 0.08

C4 < 0.001 < 0.001 < 0.001 0.06 < 0.001 0.15
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O1 0.05 0.64 0.02 0.09 0.87 0.06

O2 0.94 0.22 < 0.01 0.25 < 0.01 0.05

20G5 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Fp1 < 0.001 < 0.001 0.65 < 0.01 < 0.001 < 0.001

Fp2 < 0.001 < 0.001 0.37 0.01 < 0.001 < 0.001

C3 < 0.01 < 0.001 0.02 0.18 0.47 0.05

C4 0.03 < 0.01 0.08 0.38 0.57 0.11

O1 0.02 0.01 < 0.001 0.8 0.07 0.08

O2 < 0.01 < 0.01 < 0.001 0.98 0.1 0.11

20G6a 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

P7 0.01 0.93 0.99 0.02 0.03 0.94

P4 0.88 0.2 < 0.001 0.11 < 0.01 0.26

Cz < 0.01 0.57 0.12 0.04 0.23 0.37

Pz 0.21 0.03 < 0.001 0.28 0.01 0.12

P3 0.6 0.97 0.45 0.64 0.18 0.43

P8 < 0.001 < 0.001 < 0.001 0.19 0.73 0.29

O1 0.77 0.41 0.96 0.34 0.81 0.45

O2 0.1 0.58 0.01 0.28 < 0.001 < 0.01

T8 0.81 0.88 0.71 0.79 0.89 0.69

F8 0.03 0.25 0.19 < 0.01 < 0.01 0.99

C4 0.96 0.95 0.77 0.88 0.81 0.76

F4 0.62 0.05 0.09 0.12 0.01 < 0.001

Fp2 < 0.001 < 0.001 < 0.001 0.17 < 0.01 0.22

Fz 0.25 < 0.001 < 0.001 < 0.001 < 0.01 0.39

C3 0.51 0.67 0.44 0.8 0.17 0.25

F3 0.33 < 0.01 < 0.01 0.08 0.12 0.87

Fp1 < 0.001 < 0.001 < 0.001 < 0.01 < 0.001 0.02

T7 0.89 0.04 0.46 0.02 0.37 0.22

F7 < 0.01 < 0.001 < 0.001 0.43 < 0.01 0.02

20G6b 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

P7 0.12 < 0.001 < 0.01 < 0.01 0.16 0.16

P4 < 0.001 < 0.001 < 0.001 0.2 0.41 0.03
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Cz 0.35 < 0.001 < 0.01 < 0.01 0.02 0.55

Pz 0.25 < 0.01 0.25 0.11 0.98 0.11

P3 0.71 0.61 < 0.01 0.38 < 0.01 < 0.01

P8 0.1 0.49 < 0.01 0.36 0.17 0.03

O1 0.41 0.16 0.63 0.49 0.19 0.05

O2 < 0.001 < 0.01 < 0.001 0.29 0.3 0.04

T8 0.3 < 0.001 0.01 0.01 0.13 0.4

F8 < 0.001 < 0.001 < 0.001 0.04 0.68 0.01

C4 0.22 0.06 0.95 0.6 0.27 0.09

F4 < 0.001 < 0.001 0.8 0.47 < 0.001 < 0.001

Fp2 < 0.001 < 0.001 < 0.001 0.92 0.86 0.72

Fz 0.73 0.02 0.2 < 0.01 0.09 0.25

C3 0.43 0.72 0.26 0.23 0.72 0.1

F3 0.29 0.01 < 0.001 < 0.001 < 0.001 0.13

Fp1 < 0.001 < 0.001 < 0.001 0.56 0.79 0.48

T7 0.95 < 0.01 0.37 < 0.01 0.38 0.09

F7 < 0.001 < 0.001 < 0.001 0.94 0.79 0.77
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