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Abstract— When features in a high dimension dataset are
organized hierarchically, there is an inherent opportunity to
reduce dimensionality. Since more specific concepts are sub-
sumed by more general concepts, subsumption can be applied
successively to reduce dimensionality. We tested whether sub-
sumption could reduce the dimensionality of a disease dataset
without impairing classification accuracy. We started with a
dataset that had 168 neurological patients, 14 diagnoses, and
293 unique features. We applied subsumption repeatedly to
create eight successively smaller datasets, ranging from 293
dimensions in the largest dataset to 11 dimensions in the
smallest dataset. We tested a MLP classifier on all eight datasets.
Precision, recall, accuracy, and validation declined only at the
lowest dimensionality. Our preliminary results suggest that
when features in a high dimension dataset are derived from
a hierarchical ontology, subsumption is a viable strategy to
reduce dimensionality.

Clinical relevance— Datasets derived from electronic health
records are often of high dimensionality. If features in the
dataset are based on concepts from a hierarchical ontology,
subsumption can reduce dimensionality.

I. INTRODUCTION AND PREVIOUS WORK

Electronic health records (EHR) hold huge amounts of
clinical data. Some of the value of this data can be unlocked
by machine learning [1], [2]. It is estimated that the EHR
system of a large healthcare organization holds clinical in-
formation equivalent to 100 million years of patient data (10
million patients times 10 years) [3]. Each hospital encounter
generates as much as 150,000 pieces of data. Although some
hospital data is numerical (e.g. laboratory results), admission
notes, progress notes, and discharge summaries are difficult
to convert to a computable form. One approach to making
the signs and symptoms of patients computable has been
called deep phenotyping. With deep phenotyping, the signs
and symptoms of patients are represented as concepts from
an ontology such as the Human Phenotype Ontology (HPO)
[4]–[6].

Disease classification is an important goal of machine
learning healthcare applications [1]. The signs and symp-
toms of patients are important features utilized by machine
learning classifiers to make medical diagnoses. Healthcare
datasets are generally of high dimensionality with hundreds
or thousands of features. For example, the Human Phenotype
Ontology, used to encode the signs and symptoms of subjects
with human diseases, has 19,249 unique concepts, offering “a
standardized set of phenotypic terms that are organized in a
hierarchical fashion. Using standardized hierarchies enables
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us to put our phenotypic knowledge into an organized
framework that can be analyzed by computational means”
[7].

Feature selection (dimension reduction) is important to
machine learning applications, especially for datasets of
high dimensionality. Feature selection can improve model
accuracy, reduce over-fitting, eliminate irrelevant features,
reduce computation costs, and improve model interpretability
[8], [9]. Approaches to reducing feature dimensionality have
included filter methods, wrapper methods, ensemble meth-
ods, principal components analysis, and genetic algorithms
[8]–[10].

Ontologies offer a unique additional opportunity for di-
mension reduction due to their inherent hierarchical struc-
ture. Most medical terminology ontologies are based on a
subsumptive containment hierarchy with classes hierarchi-
cally organized from the general to the specific; also known
as IS-A hierarchies. Each child class inherit properties from
its parent class. The inheritance of properties from a parent
is called subsumption. Subsumption supports dimension re-
duction. For example, the children concepts micrographia,
masked face, impaired turns, decreased arms swing, reduced
blink rate are subsumed under the more general concept
bradykinesia (Fig. 1). Similarly the concepts fine tremor,
resting tremor, action tremor, postural tremor, voice tremor,
senile tremor are subsumed under the more general concept
tremor. The hierarchical structure of ontologies and the
ability to collapse sub-classes into more general super-classes
makes an ontology well-suited for feature reduction.

II. METHODS

A. Proposed Approach

We proposed to test the hypothesis that the hierarchical
structure of ontologies can be used to reduce the dimension-
ality of disease datasets without an adverse impact classifica-
tion accuracy. We tested this hypothesis on a disease dataset
with 168 instances (patients), 293 unique features (signs and
symptoms), 1953 total features, and 14 unique labels (diag-
noses). The dataset was derived from published case histories
in neurology textbooks as previously described [11] and no
protected health information (PHI) was used in this study.
Features were derived from a hierarchical ontology with
1242 unique concepts based on the neurological examination
[12], [13]. We tested classification accuracy, precision, and
recall at 8 different levels of specificity within the ontology
hierarchy, reflecting a reduction in dataset dimensionality
from 293 to 11 dimensions.
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Fig. 1. A small excerpt from the neuro-ontology. The neuro-ontology has 11 major branches below the root (seven shown) and 1242 terminal nodes.
Concepts in the ontology become increasingly specific at lower levels going from coarsest (least specific) to most granular (most specific) at the lowest
level. The concept micrographia (shown in dark blue) is most specific and is subsumed by bradykinesia, then movement disorder, and finally by the coarsest
(least specific) concept motor finding. Each color represents a different level in the concept hierarchy.

TABLE I
DIAGNOSES AND TYPICAL FINDINGS

Diagnosis N Finding
amyotrophic lateral sclerosis 22 weakness, fasciculations, hyperreflexia
dystonia 10 dystonia
normal pressure hydrocephalus 14 dementia, gait apraxia, incontinence
Lewy body dementia 6 dementia, hallucinations, bradykinesia
hemiballismus 4 hemiballismus
myasthenia gravis 18 weakness, diplopia, ptosis
moyopathy 18 proximal weakness
Huntington disease 17 personality change, chorea, dementia
essential tremor 7 tremor
Parkinson disease 20 tremor, bradykinesia, rigidity
multiple system atrophy 9 dysautonomia, bradykinesia, rigidity
progressive supranuclear palsy 9 gaze palsy, bradykinesia, rigidity
spinocerebellar ataxia 5 ataxia, weakness, spasticity
Wilson disease 9 tremor, ataxia, personality change

B. Dimensionality reduction

We used Python to traverse the neuro-ontology [12]from
each of its 1242 terminal nodes to the root node (Fig.
1). We created 1242 ordered lists (one for each concept)
of length n=8 where the last element in the list was the

penultimate concept (last node prior to root) and the first
element in the list was the terminal concept. If the list was
less than 8 elements long, it was back-filled to 8 elements by
repeating the first element (terminal node) until all lists were
8 elements in length. For example the list for micrographia
(Fig. 1) was [micrographia, micrographia, micrographia,
micrographia, bradykinesia, hypokinesia, movement disorder,
motor finding]. Using these ordered lists as a reference, we
created eight new datasets by sequentially replacing the first
element in the ordered list with the second element and so on,
seven times. This allowed us to perform dimension reduction
sequentially with each reduction reflecting replacement of a
child concept with its parent concept (Table II.)

C. Machine learning classifier and classification metrics

We used MATLAB to construct a multilayer perceptron
(MLP) of 3 hidden layers, each with 300 neurons. Each
neuron utilized a hyperbolic tangent transfer function. Output
layers used a softmax transfer function. The learning rate was
set at 0.01 with a momentum constant of 0.1. Our dataset
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was split into training, testing, and validation subsets using
a 70:15:15 ratio respectively. Each trial was constrained to
a maximum of 1000 epochs (most trials ran for fewer than
60 epochs). Training performance was evaluated by cross-
entropy, which consistently yielded higher classification ac-
curacy than a mean-squared error performance metric [14].

TABLE II
DIMENSIONALITY

Level Features
level 1 293
level 2 287
level 3 272
level 4 255
level 5 222
level 6 157
level 7 62
level 8 11

Each classification
was one-against-rest
(OAR). The limited
size of the dataset
precluded meaningful
classification results
with some of the
diagnosis classes
with few members
(Table I). Accuracy,
precision, recall, and
minimum validation
loss were recorded
and averaged across
10 trials at each of
the eight ontology levels. Two-way ANOVA and post hoc
testing were by GraphPad Prism 9.

III. RESULTS

A. Dimension reduction

Using sequentially repeated subsumption based on hier-
archical levels in the ontology, we reduced dimensionality
from 293 dimensions to 11 dimensions (Table II). Each case
was represented by eight different vectors of successively
lower dimensionality based on the hierarchy of signs and
symptoms in the neuro-ontology.

B. Classification performance

We tested the MLP classifier on the four most common
diagnoses in the dataset (amyotrophic lateral sclerosis, my-
opathy, myasthenia gravis, and Parkinson disease (Table I).
Classification precision, accuracy, recall, and validation loss
did not decline until level 8 (the level that utilized the most
general concepts) of the ontology (Figs. 2-5). In general, the
classifier performed well on all four diagnoses. Classifica-
tion performance was minimally better for the diagnosis of
myasthenia gravis than the other three diagnoses (Figs. 2-4).

IV. DISCUSSION AND CONCLUSIONS

Like many disease datasets, our dataset was of high
dimensionality (293 different signs and symptoms) despite
having only 168 cases (Table I). The features of our dataset
were derived from a subsumptive containment hierarchy
[12]. In a subsumptive containment hierarchy more specific
concepts are subsumed by more general concepts. We used
subsumption successively to reduce the dimensionality of
our dataset from 293 dimensions to 11 dimensions. Each
successive application of subsumption reduced dimensional-
ity of the dataset and substituted a more general concepts
for a more specific concepts. The performance of the MLP
classifier was surprisingly lossless with dimension reduction.

Fig. 2. Accuracy (mean ± SEM) for classification by ontology level.
Two-way ANOVA showed significant effects (p < 0.05) for both ontology
level and diagnosis. Post hoc tests (Tukey) showed level 8 accuracy was
lower than other levels and that myasthenia gravis accuracy was higher
than Parkinson disease and myopathy (p < 0.05).

Fig. 3. Precision (mean± SEM) by ontology level. Two-way ANOVA
showed significant effects (p < 0.05) for both ontology level and diagnosis.
Post hoc tests (Tukey) showed level 8 precision lower than the other levels
and myasthenia gravis precision higher than myopathy.

Performance of the classifier did not drop significantly until
the eighth level of the ontology which utilized the most
general concepts. At the seventh level of the ontology,
dimensionality was reduced to 62 dimensions from 293
dimensions (a 79% reduction), yet overall performance of
the classifier remained high (Figs 2-5).

The goal of dimension reduction methods for high di-
mension datasets is to find the minimal subset of features
that maintains classifer accuracy and retains predicted class
sizes reflective of the class sizes in the ground truth dataset
upon retraining [15]–[17]. Two commonly used strategies to
reduce dataset dimensionality include feature selection and
feature extraction. Feature selection (filter methods, wrapper
methods) emphasize algorithms that reduce the number of
features into the smallest subset that accurately predict class
membership [15]–[17]. Feature extraction methods (principal
components, linear discriminant analysis, etc.) emphasize
methods for collapsing a large number of features into a
smaller number of highly predictive features. The use of
subsumption to collapse features into a smaller number of
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Fig. 4. Recall (mean ± SEM) by ontology level. Two way ANOVA
showed both ontology level (df= 7) and diagnosis (df=3) effects were
significant (p <0.05). Post hoc testing with Tukey correction showed
ontology level 8 had lower recall than the other 7 levels. Recall was better
for myasthenia gravis (p<0.05) than the other three diagnoses.

Fig. 5. Validation loss (mean ± SEM) by ontology level. Two-way
ANOVA showed ontology level was significant (p < 0.05). Diagnosis effect
was non-significant. Post hoc comparisons with Tukey correction showed
level 8 validation loss was higher than other levels (P < 0.05).

features bears more resemblance to a feature extraction strat-
egy than a feature selection strategy. The use of knowledge
embedded in a hierarchical ontology has been suggested by
others as a dimension reduction strategy [18].

This work has important limitations. First, the dataset
was small and future testing utilizing a larger dataset will
be advantageous. Second, we did not test our dataset on
other classifiers such as SVM, k-nearest neighbor, or logistic
regression [19]. Comparison of the MLP classifier to other
classifiers would be instructive. Third, due to asymmetries
in the depth of the ontology, significant dimension reduction
did not occur until level 5 of the ontology (Table II). Finally,
we did not compare subsumption to other feature selections
methods such as FCBF [20], mutual information [21], or
Relief [22]. We plan to make these comparisons in the future.
Other studies have found that when different feature reduc-
tion strategies are compared classifier performance depends
on the nature of the dataset, the classifer utilized, as well as
the feature reduction algorithm [19].
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