Odor valence modulates cortico-cortical interactions: a preliminary
study using DCM for EEG
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Abstract— Olfaction and emotions share common networks in
the brain. However, little is known on how the emotional content
of odors modulate dynamically the cortico-cortical interactions
within these networks. In this preliminary study, we investigated
the effect of odor valence on effective connectivity through
the use of Dynamic Causal Modeling (DCM). We recorded
electroencephalographic (EEG) data from healthy subjects per-
forming a passive odor task of odorants with different valence.
Once defined a fully-connected a priori network comprising
the pyriform cortex (PC), orbitofrontal cortex (OFC), and
entorhinal cortex (EC), we tested the modulatory effect of
odor valence on their causal interactions at the group level
using the parametric empirical bayes (PEB) framework. Results
show that both pleasant and the unpleasant odors have an
inhibitory effect on the connection from EC to PC, whereas
we did not observe any effect for the neutral odor. Moreover,
the odor with positive valence has a stronger influence on
connectivity dynamics compared to the negative odor. Although
preliminary, our results suggest that odor valence can modulate
brain connectivity.

I. INTRODUCTION

The intimate relationship between the sense of smell and
emotions arises in the brain substrates shared between these
two cognitive processes [1]. Indeed, once the olfactory in-
formation reaches the piriform cortex (PC) (i.e., the primary
olfactory cortex), it is then projected to a variety of cortical
and subcortical regions involved in memory and emotion.
Particularly, the PC has bidirectional interactions with the
orbitofrontal cortex (OFC) and lateral entorhinal cortex (EC)
in response to olfactory stimuli with emotional content [2]—
[5]. Moverover, it has been reported the role of the OFC
in evaluating the valence of olfactory stimuli, by interacting
with the PC and other regions [6], and a potential role of
the EC in providing a highly odor-specific and memory-
dependent feedback to the primary olfactory cortex [7]. The
investigation of how the neural response to odor stimuli with
different valence modulates the cortico-cortical interactions
among these three regions may provide useful insights on
the relationship between olfaction, emotions and memory
processing.

Dynamic Causal Modeling (DCM, [8]) offers a powerful
framework to estimate, and make inferences about, the dy-
namical coupling among brain areas. This method is particu-
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larly suitable when confirming/rejecting a specific hypothesis
about effective connectivity (i.e., the influence that one neural
system exerts over another, [9]). In this context, both DCM
for fMRI and for EEG have been developed [8], [10] and
applied to several applications. In the field of olfactory neural
processing, DCM for fMRI has highlighted an increase of the
connectivity strength between PC, OFC and amigdala (AM)
in response to experimentally induced anxiety stimulation
[11]. In another study, the modulatory effect of attention to
odor perception showed the activation of a thalamic specific
pathway from PC to OFC [12]. On the other hand, to
the best of our knowledge, DCM for EEG has not been
applied yet to analyze the neural correlates of olfaction.
Accordingly, EEG offers several advantages such as the
possibility of measuring the electrical activity of the cerebral
cortical sources at the time scale of olfactory processes
[13]. Indeed, using EEG data, previous studies have applied
source reconstruction techniques to find temporal cascades
of cortical activations related to the processing of pleasant
and unpleasant olfactory stimuli [14], [15]. In this sight,
the application of DCM to EEG could represent an ideal
way to evaluate modulatory effects of emotional valence on
brain effective connectivity, explicitly modeling the activity
of neuronal populations through firings rates and voltages,
and thus resulting in a biophysically detailed method [10].

In this preliminary study, we evaluated how olfactory stim-
uli with different valence modulate the interaction between
cortical brain sources involved in the olfactory processing.
To this aim, we acquired EEG data from healthy volunteers
performing a passive odor task. Odorants were chosen to
convey pleasant, unpleasant and neutral valence [16]. We
used DCM for EEG to infer effective connectivity among
PC, OFC and EC. Specifically, we hypothesized that the
stimuli could modulate all the connections of the network.
Finally, we used Parametric Empirical Bayes (PEB) [17]
to investigate how emotional valence modulated effective
connectivity at the group level.

II. MATERIALS AND METHODS
A. Subjects

Twenty one healthy volunteers (age 26 +2, 13 males) par-
ticipated in the study. Subjects were asked not to drink or eat
in the 30 minutes preceding the experiment. Participants were
selected based on their olfactory threshold to N-butanol, with
respect to distilled water, in order to ensure a homogeneous
panel in terms of olfactory perception.

B. Experimental protocol

The experimental protocol was approved by the Ethical
Committee of the University of Pisa. All participants signed



an informed consent prior to the experiment. The experiment
consisted of a 10 minute session, in which we administered
3 different stimuli: i.e., vanillin (152.15g/mol), n-butanol
(74.12g /mol) and isovaleric acid (102.13g/mol). Odors were
selected in order to convey positive (vanillin), neutral (n-
butanol) and negative (isovaleric acid) valence, based on
previous studies [16]. Furthermore, concentrations were cho-
sen to guarantee isointense solutions, and odor stimuli were
administered by approaching vials at 2cm from participants’
nostrils. Participants were asked to sit on a chair in an
isolated room, and to keep their eyes closed for the entire
duration of the experiment. Participants first performed 3
minutes of initial rest. Then, for each stimulus, there were
three phases comprising: 1 minute of rest pre-stimulus, 5
seconds of odor administration and 1 minute of rest post-
stimulus. The order of the olfactory stimuli was randomized
across subjects.

C. EEG data acquisition and preprocessing

EEG data were acquired using a 128-channel Geodesic
EEG System 300 from Electrical Geodesics, Inc. (EGI), with
a sampling frequency of 500Hz. Electrodes were referenced
to Cz, and impedances were maintained below 20kQ. EEG
preprocessing steps were performed using EEGLAB. First,
we applied an anti-aliasing filter and we downsampled the
data to a sampling frequency of 100Hz. Then, we high-
pass filtered the data at the cut-off frequency of 1Hz with
a non-causal filter to improve stationarity. We removed
flat channels, poorly correlated channels and short-time
high-amplitude artifacts (e.g., head movements, electromyo-
graphic activity, and other non-stereotyped artifacts) by ap-
plying the artifact subspace reconstruction (ASR) method
[18]. After the visual inspection of the data, we applied
spherical interpolation to recover removed channels and we
referenced the data to the average of the channels. Finally,
we applied Independent Component Analysis (ICA) to EEG
signals to remove non-brain activity such as eye artifacts,
muscular activity and other non-stereotyped sources of noise.

D. Dynamic causal modeling

Preprocessed EEG data were analyzed with DCM us-
ing SPM12. Specifically, we used DCM for cross-spectral
densities (CSD) to describe the steady-state dynamics of a
network of coupled cortical sources [19]. DCM for CSD
is a generative model of observed electrical scalp activity
in which each brain source is modeled with a neural mass
model of unknown parameters [20], and the signal registered
on the scalp corresponds to the projection of such hidden
activity through a spatial electromagnetic forward model
[10]. Starting from the recorded EEG signal, it is possible to
estimate the posterior probability densities of the unknown
parameters of neural mass models and the forward model
by Bayesian model inversion. Specifically, parameters are
estimated by maximizing the model’s negative free-energy,
an approximation of the model evidence that accounts for the
balance between accuracy and complexity (i.e., the deviation
of posterior estimates from the priors) [21]. Here, we adopted
the ERP neural mass model [20] and the default forward
model implemented in SPM12.

In DCM, the anatomical locations of the brain sources
(i.e., network nodes) need to be specified a priori. Here,

we focused on a network consisting of three cortical nodes
involved in olfactory processing: i.e., PC (MNI coordinates
-24 -6 -12), EC (MNI coordinates -8 -11 -20) and OFC (MNI
coordinates 0 31 -13) [3]-[5]. Then, we modelled effective
connectivity between such nodes by means of forward and
backward connections [22]. In particular, these two type
of connections differ in terms of their origin and target
subpopulation, describing bottom-up (i.e., forward) and top-
down (i.e., backward) modulations. Here, we hypothesized
a fully connected network with PC—EC, PC—OFC, and
OFC—EC as forward connections, and EC—PC, OFC—PC,
and EC—OFC as backward connections (Fig [11, [7],
[23]. Then, we inferred the effective connectivity between
each pair of nodes by a model inversion to analyze how
different odor stimuli modulate connectivity. Indeed, the
DCM framework allows to model changes in the strength
of connections among nodes by comparing two or more
different conditions [10]. Here, we evaluated how positive,
negative and neutral odor stimuli modulated connectivity
with respect to a resting baseline. (Fig. [T). To this aim, we
performed a two-level analysis with the Parametric Empirical
Bayes framework (PEB) to infer such modulatory effect at
the group level starting from single subject estimates [17].
Such framework specifies a hierarchical statistical model of
connectivity parameters according to the following set of
equations:
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where the first level analysis @ allows to infer single

subject connectivity parameters 6; ° of the DCM I'(.) from
the EEG measurements Y;. Here, any uninteresting known
effect (e.g., the signal mean) is modeled by a general linear
model (GLM) with design matrix Xy and parameters fi,-,
whereas the observation noise is modeled as residuals (1.
The second level analysis gives an estimate of the group
level parameters 62 by modeling the first-level parameters
6(1) with a GLM having design matrix X. The design
matrix X encodes the hypotheses regarding differences across
subjects, and it is constructed by specifying the between-
subject X;, and the within-subject X,, effects. X;, models the
variability across subjects (i.e., the covariates), where each
column is a covariate and each row is a subject. X, defines
which model parameters (e.g., connections) are influenced by
the between-subject effects. The group level design matrix
is then obtained according to X = X, ® X,,, where ® is the
Kronecker tensor product. Differences across subjects not
captured by X are then defined as zero-mean additive noise
e, Finally, priors on the second level parameters 6@ are
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Fig. 1. Extrinsic connectivity between PC, EC and OFC. Solid and dashed
arrows indicate forward and backward connections, respectively.
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identical to the first level priors, except the prior variance is
adjusted based on the scaling of the design matrix X (see
[17] for a more detailed explanation).

E. First level analysis

Each experimental condition was modeled as a deviant
condition with respect to a resting baseline. Specifically, we
considered the last 5s of initial rest as the baseline, and the
5s long window of odor administration as deviants. Then,
CSDs were computed using Bayesian multivariate autore-
gressive modeling [24] with the model order of 8 (SPM12
default), in the 4-30 Hz frequency range. Note that, CSDs
were estimated on the first 8 principal eigenmodes of EEG
channels mixture, in order to reduce data dimensionality
while retaining the maximum amount of information [10].
Afterwards, we modeled each brain source as an equivalent
current dipole on the cortical sheet and we chose the ERP
neural mass model to model their activity [20]. Furthermore,
we used a boundary element model of the head based on
the template from Montreal Neurological Institute (MNI;
Montreal, Canada) to model the passive volume conduc-
tion effects. The model described in (2) was inverted by
maximizing the negative free-energy. Since model inversion
may suffer from early convergence issues due to free-energy
local minima (an exhaustive description of the problem is
available in [25]), we adopted a two-stage procedure. First,
we overfitted each model by setting the prior for the expected
precision of the data to a higher value. This increases the
reliability on achieving accurate fittings at the expense of
model complexity [26]. Finally, we restored the prior to its
original value and we repeated the fitting by initializing the
priors with the posterior estimates of the previous step.

F. Second level analysis

We estimated the second level parameters (i.e., the modu-
latory effects of each stimulus at the group level) using three
separate GLMs (I). To model the average connectivity across
subjects, we defined X, = 17, and we setted X,, as the identity
matrix to include all the parameters in the analysis. Finally,
we derived the second level design matrix as X = X, ® X,,.
After having estimated the parameters of the group level
GLM, we performed an exhaustive search to test whether
there was an effect of valence on the estimated connectivity
using the PEB. Specifically, we hypothesized that valence
could influence any connection in the network. Accordingly,
we compared the evidence for reduced GLMs where certain
combinations of parameters were ‘switched off” (i.e., fixed at
their prior expectation of zero). Specifically, we estimated the
GLM parameters and posterior probabilities of all possible
reduced GLMs, and derived group weighted-average connec-
tivity through Bayesian model averaging (BMA, [17]):

p(6@16W) =y p(6* 6" m)p(m6)  (3)

where the group level parameter distribution p(6®]6(1) is
obtained from the average over models m of the second-level
GLMs parameters distribution p(6>)|0(1) m), weighted by
their model posterior probability p(m|@(")). Such weighted-
average gives the parameters which best explain the ef-
fect of odor valence on connectivity changes. Finally, we
thresholded the results to retain only those parameters whose

probability of being present vs. absent (i.e., the probability
associated to the difference in evidence between the GLMs
with/without a particular parameter) was greater than 0.95,
which constitutes strong evidence [27].

III. RESULTS

DCMs at the first level were successfully fitted for
each subject, reporting no indications of early convergence.
Specifically, the average explained variance was 80.92% (in
the range 65.15-98.02%), indicating a good description of
the data.

Second level analysis results are outlined in Fig[2] Specif-
ically, we report the BMA of each stimulus under study
(i.e., positive, negative and neutral) for each connection. The
height of grey bars represent the effect size of the stimulus,
whereas pink error bars indicate the 90% credibility interval.
For the neutral odor (Fig[2h), we did not observe any strong
evidence for a modulation of the connectivity between any
node of the network. On the other hand, the connectivity
strength of EC—PC decreased in response to both pleasant
and unpleasant odors (Fig,d), indicating the presence of
an inhibitory effect (Fig[Zp). Moreover, we observed that
Vanillin had a stronger effect on such a connection with
respect to Isovaleric Acid.
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Fig. 2. BMA results. a) Effective connectivity and modulatory effects
of odor valence between PC, OFC, and EC. b-d) Modulatory effects of
neutral, pleasant and unpleasant odors on the group-connectivity. The grey
bars represent the effect size of the stimulus, whereas pink error bars indicate
the 90% credibility interval.

IV. DISCUSSION AND CONCLUSIONS

In this preliminary work, we investigated the modula-
tory effects of odor valence on effective brain connectivity
through DCM for EEG. Specifically, we focused on a brain
network made of reciprocally connected regions involved
in olfactory, emotional and memory processing: i.e., PC,
OFC and EC. Based on this network, we exploited the
PEB framework to investigate the effects at the group-level
of positive, negative and neutral odor stimuli on effective
connectivity. Although preliminary, our results highlighted
a different behaviour of connectivity based on stimulus
valence.

Group level analysis showed no modulation of the neutral
odor on any connection of the network. On the other hand,
both the pleasant and unpleasant stimuli had an effect on the
backward connection from EC to PC. Accordingly, we may
suggest that olfactory stimuli with emotional valence may



produce changes in connectivity otherwise not elicited with
neutral stimuli. Moreover, we observed that both positive and
negative odors had negative-valued effect size, indicating a
inhibitory effect on such a connection. It is worthwhile men-
tioning that the pleasant odor induced a stronger modulation
than the unpleasant odor.

We are aware that modeling the neural circuits of olfactory
perception could include other regions, such as AM and
hippocampus [1], [28]. Yet, measuring subcortical activity
with EEG is still tricky. In particular, the EEG inversion may
be not feasible. Hence, although these regions have bidirec-
tional connections with the nodes of our network, we cannot
exclude their contribution to the observed connectivity. While
EC is the gateway to the emotional processing of odors, the
role of EC back projection to PC have been recently linked
to a top-down tuning of fine odor discrimination [7]. Here,
we speculate that such tuning is more active when the odor
is neutral rather than when it is clearly pleasant or unpleasant
since in the first case a more precise discrimination is needed
to evaluate potential meaning (e.g., threat, reward etc.) of the
presented odor.

To the best of our knowledge this is the first study applying
DCM for EEG to investigate the modulatory effects of
valence on the effective connectivity among brain regions
involved in olfactory processing. Although preliminary, our
results highlighted a physiologically plausible modulation
of valence on EC—PC group average connectivity. In this
view, future analysis could include other types of stimuli,
as well as provide other experimental paradigms. We also
argue that inter-subject variability could be considered as
well when investigating the neural processing of odors. In
fact, the influence of odors may differ, based on subject-
specific factors such as age, sex, or cultural background
[29]. Accordingly, it would be of interest to study the effect
of inter-subject variability in response to odor valence, as
for instance by including regressors of subjects specific
differences in the PEB analysis.
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