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Abstract— Gaining a better understanding of which brain re-
gions are responsible for emotional processing is crucial for the
development of novel treatments for neuropsychiatric disorders.
Current approaches rely on sparse assessments of subjects’
emotional states, rarely reaching more than a hundred per
patient. Additionally, data are usually obtained in a task solving
scenario, possibly influencing their emotions by study design.
Here, we utilize several days worth of near-continuous neural
and video recordings of subjects in a naturalistic environment
to predict the emotional state of happiness from neural data. We
are able to obtain high-frequency and high-volume happiness
labels for this task by first predicting happiness from video data
in an intermediary step, achieving good results (F1 = .75) and
providing us with more than 6 million happiness assessments
per patient, on average. We then utilize these labels for a
classifier on neural data (F1 = .71). Our findings provide a
potential pathway for future work on emotional processing that
circumvents the mentioned restrictions.

I. INTRODUCTION

Identifying which brain regions are responsible for emo-
tional processing is crucial for the development of novel
brain-machine approaches to treating neuropsychiatric dis-
orders [1], as for some disorders like major depression a
significant portion of patients is not responding to current
treatment options [2]. To date, most studies that aim to
identify emotions from brain activity are conducted in a
non-naturalistic environment where test subjects are asked to
execute some form of task, possibly altering their emotional
state. Such a setting also leads to a constraint on the amount
of data that can be collected, as subjects can be engaged in
a test scenario only for so long. This can in turn result in
increased variability and uncertainty in the obtained findings.
Examples are studies where subjects are asked to view
photographs with differing emotional valences and intensities
inside an fMRI scanner [3] or alongside EEG recordings
[4]. In a review of 64 studies [5] attempting to decode
emotion from human intracranial electrophysiology, thirty-
nine studies examined neural activity during the experience
of negatively or positively valenced emotional states, twenty-
one while subjects perceived emotional states in others,
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and eleven during the elicitation of facial expressions of
emotional states, with some studies appearing in more than
one category. None of these 64 studies assessed emotion in
a naturalistic environment. A more recent work [6] utilizes
continuous ECoG recordings over several days in a natural-
istic environment, very similar to the neural data used here,
but relies on sparse mood data obtained by subjects filling
out mood questionnaires twice per day.

In our study, we propose a novel approach to emotional
assessment that avoids sparse emotional sampling and allows
for the assessment of emotion in a naturalistic environment.
We do so for the example emotional state of happiness. For
five hospital patients, we use an average of five days of near-
continuous neural and video recordings with a resolution
of 1000Hz and 30Hz, respectively. Brain recordings were
obtained through intracranial electrodes implanted via the
invasive electrocorticography (ECoG) method. Our method
consists of 1.) calculating facial features from video data
on a frame-by-frame basis with the OpenFace 2.0 software
[7], 2) using these features to predict the happiness of a
subject for each frame, with manual happiness annotations as
ground truth, and 3) using these high-volume, high-frequency
happiness predictions to generate labels for a subsequent
classifier that infers happiness from neural data. Happiness
is therefore assessed on the basis of facial expressions [8].
This two-step approach allows us to obtain good results with
standard machine learning techniques due to the amount of
available data. Finally, we reconstruct which brain regions
were most implicated in the classifier’s decision making.

II. DATA

We obtained video and ECoG recordings from five sub-
jects at Harborview Medical Center (Seattle, WA) as part of
standard patient care for intractable epilepsy. All subjects
provided written, informed consent to use their data for
research purposes. The experimental procedures involving
human subjects described in this paper were approved by
the UW Office of Sponsored Research. ECoG electrodes are
primarily placed on the cortical surface. In two subjects,
few electrodes were also implanted beneath the surface.
The subjects then spend several days in the hospital under
additional video monitoring, yielding the near-continuous
video and ECoG recordings. For each subject, a multitude
(mean = 98.33, std = 10.23) of intracranial electrodes
provide measurements of neural activity sampled at 1000Hz.
Coverage of the brain is limited (see figure 1), and electrode
positions are inconsistent across subjects. This means that for
some subjects, regions implicated in emotional processing
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Fig. 1. Neural recording electrode coverage for subject S1. Coverage of
the brain is limited, with the prefrontal cortex and most of the deeper layers
of the brain not covered.

are not directly recorded. The video data was sampled at
30FPS throughout several hundred videos per subject at a
length of about 120 seconds each. Videos were censored for
privacy-sensitive content.

III. METHOD

We first trained a video classifier to predict happiness
from the videos on a frame-by-frame basis using manual
annotations that were available on a subset of frames across
all subjects. Then, we used these predictions to generate
labels for a subsequent ECoG classifier inferring happiness
from neural data. The complete workflow is depicted in
figure 2.

Video Classifier To extract the happiness state from video,
we made use of the OpenFace 2.0 open-source toolkit to
calculate 709 facial features on a frame-by-frame basis for
all videos of all subjects. These features included eye gaze
[9], facial landmarks [10], head pose, and facial action units
[11]. Each feature is calculated using deep neural networks
that have achieved state-of-the-art performance [7]. These
calculated features served as the features for a single Random
Forest classifier that we trained across the data of all subjects.
As labels, we used manual binary happiness annotations on
a subset of 299 videos pooled across all subjects. Within
a given video, frames and thus facial features were fairly
similar to each other. To avoid these similar data points
ending up in both train and test set, possibly leading to
an overestimation of the classifier performance, we applied
grouping during the train-test split, ensuring that all data
points belonging to a single video ended up in either the train
or the test split. We also tried a linear SVC in combination
with a Nyström kernel approximation, but achieved inferior
results. We applied the trained classifier to all unlabeled
video frames and thus obtained on average 6 million hap-
piness expression predictions to be used in the follow-up
stages.

ECoG Classifier We preprocessed the ECoG data by
bandpass filtering between 1–200 Hz, removing high am-
plitude artifacts, downsampling to 500 Hz, and discarding
individual electrodes whose standard deviation or kurtosis
laid several magnitudes (5 and 10, respectively) outside
the median range of all electrodes’ respective values. We
synchronized in time the neural recordings and the happiness
predictions coming from the video classifier, taking into
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Fig. 2. ECoG classifier pipeline. Happiness labels are generated with the
video pipeline, which are classified using features from processed ECoG
recordings.

account filtered or missing data points on either side. To
account for the fact that emotions can last up to several
minutes [12], we applied a window of 100 seconds to
the data. Within each window, we calculated the fraction
of frames predicted as happy by the video classifier and
converted it to a binary happy label via a cutoff at a ratio
of .3. This subsuming approach helps alleviate some of the
inaccuracy in the video classifier predictions.

For the neural data, we calculated the power spectral
density using the Welch method [13] for each electrode
in each window. Since there were on average 91 retained
electrodes per subject (std = 13) and the Welch method
returned power spectrum densities up to 250Hz with a
resolution of 2Hz, this resulted in 91×125 ≈ 1.1·104 feature
points. In order to reduce that number, several measures
were taken. First, power densities for frequencies above
150Hz were cut off, as based on current research we assume
the frequencies relevant to be below that threshold [14].
Second, the remaining densities were binned according to
their frequencies on a logarithmic scale.

For each frequency bin, we summed up the power spectral
densities, leaving us with eight features per electrode instead
of 75 (a reduction of ∼ 90%). To remove segments with
noisy data caused by an electric hum usually noticeable at
around 120Hz, we took the high-frequency bin containing
the 120 Hz frequency and calculated the standard deviation
and median across time for each electrode. We then discarded
all sample points where for at least one electrode the high-
frequency bin value deviated further than four standard
deviations from the median. Additionally, we standardized
each feature across time. As the last step towards lowering
the number of features, we applied principal component
analysis (PCA) to the data, retaining the components that
cumulatively explained > 90% of the total variance.

Electrodes are prone to temporary failures and artifact
occurrences. Thus, different days might yield a different
set of good channels. To ensure congruence over multiple
days, we took the intersection of channels that were non-
faulty throughout the entire time span. We split the data into
train and test sets, paying special attention to not let any
information leak from the test set into the training set and
vice versa. For example, we ensured that the standardization
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of the data, the artifact detection, and the principal directions
are not in part determined by the test data. These steps
are therefore taken after the shuffling of the data. Similar
to the first pipeline, we made use of a Random Forest
classifier to infer happiness from the data. Here, we trained
a separate classifier for each subject, as inter-comparability
is limited due to variability in electrode coverage. We also
tested support vector classifiers with both polynomial and
RBF kernels but obtained significantly worse results.

For both the video and the ECoG classifiers, we applied a
random search over the number of estimators, the maximum
depth per tree, and the maximum number of features consid-
ered at each split using 10-fold cross-validation. Performance
for a given hyperparameter selection was measured by cal-
culating the average precision score for each validation fold
and then taking the median across the ten average precision
scores. We retrained the classifier on the whole train set
for the best combination of hyperparameters found during
this procedure. For the video classifier, grouping was again
applied when splitting the train data into folds.

IV. RESULTS

The main goal of the video classifier was to provide us
with high-volume happiness predictions to be used for the
labels for the ECoG classifier. On average, we achieved an
increase of 1676% from manual annotations to annotations
derived through the video classifier. As for the reliability of
our approach, we were able to obtain overall good results
with the video classifier, achieving an F1 score of .89
(precision = .87, recall = .91, accuracy = .92) on the
train set and an F1 score of .75 (precision = .90, recall =
.65, accuracy = .73) on the test set, as depicted in table 3.
While results are consistently good for almost all subjects,
the classifier performs poorly on subject S1. Possible reasons
are given in section V. Based on these results, we can assume
the predictions of the classifier to be reliable enough for
continued usage, with the exception of subject S1.

For the ECoG classifier, we achieved an average F1 score
of .77 (std = .11) with an average accuracy of .78 (std = .05)
on the train sets of the subjects. On the test sets, we obtained
an average F1 score of F1 = .71 (std = .17) with an accuracy
of .73 (std = .09). The classifier trained on S1 performs the
worst, which based on the poor video classifier performance
for that subject was expected.

To obtain insight into the brain regions most involved in
ECoG classification, we multiply the feature importances
of the Random Forest classifier with the weightings used
durixng principal component analysis, giving us an impor-
tance value for each recording site. We determine the nearest
Brodmann areas (BA) for each subject’s five most important
electrodes (Table 5). This is appropriate since all important
electrodes are located on the cortical surface. Since the
metrics for subject S1 render their predictions unreliable,
we have excluded them from the table to ensure better
insight into commonalities between all other subjects. The
Brodmann Areas for subject S1 were 1, 21 (2x), 22, 45.

Overall Results
Set Support Pr Re F1 Acc
Train 19870 0.87 0.91 0.89 0.92
Test 10313 0.90 0.65 0.75 0.73

Train Results
Subject Happy Ratio Pr Re F1 Acc
S1 448 / 4690 0.75 0.91 0.82 0.97
S2 0 / 486 0.97
S3 5424 / 2454 0.92 0.94 0.93 0.90
S4 1170 / 4270 0.71 0.91 0.79 0.90
S5 320 / 608 0.94 0.49 0.65 0.81

Test Results
Subject Happy Ratio Pr Re F1 Acc
S1 15 / 909 0.03 0.13 0.04 0.90
S2 1292 / 262 0.92 0.59 0.72 0.62
S3 3716 / 1286 0.92 0.74 0.82 0.76
S4 1039 / 746 0.91 0.45 0.60 0.66
S5 381 / 667 0.78 0.51 0.62 0.77

Fig. 3. Top: Overall results of the video classifier. Support indicates the
total number of labels in each set. Middle: Train Results broken down by
subject. Happy Ratio signifies the count of happy/not happy labels. We only
trained a single classifier across all subjects, explaining the imbalances in the
happy ratio on a subject level. Remarkably, the videos that S2 contributed
to the train set did not include any happy labels, but the classifier was still
able to perform well on that subject’s test happy labels, indicating that the
classifier generalizes well across patients. Bottom: Classifier performance
on the test set. Apart from S1, results are consistently good.

V. CONCLUSION AND DISCUSSION

Apart from S1, the video classifier generalizes well across
all subjects, even with group splitting that rendered train
and test sets to be more distinct. Remarkably, the classifier
did not see a single happy instance for subject S2 during
training, but still performed well on their portion of labels in
the test set. Using qualitative insight into the video data, we
could identify three possible reasons why performance on
subject S1 is notably worse than on the rest. The subject
was the only one to wear glasses, to have a beard, and
to have a dark skin tone, which led to many incorrect
facial feature detections. Thus, we may be seeing a result of
disproportionate representation in the datasets OpenFace was
trained on. With the constant expansion of existing training
data for face detection and recognition tasks, we expect those
problems overcome in future versions of the software.

The ECoG classifier performs well overall. The dropoff in
performance for subject S1 was expected, as the labels are
based on the output of the video classifier and therefore likely
inaccurate for this subject. Some of the inter-subject variance
in involved brain regions may be attributed to the deviations
of recording sites across subjects, making it more difficult
to pinpoint involvement of the same region for all subjects.
We observe regions known to be explicitly involved with
emotions, such as the prefrontal cortex (BA10) [15][16] and
the temporal pole (BA38) [17]. Others are highly connected
to areas involved in emotional processing (BA20) [18] or are
likely involved due to correlative effects, such as the motor
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Train Results
Subject Happy Ratio Pr Re F1 Acc
S1 479 / 1351 0.55 0.65 0.60 0.77
S2 844 / 582 0.81 0.89 0.85 0.81
S3 1355 / 406 0.85 0.97 0.91 0.85
S4 643 / 1016 0.57 0.85 0.68 0.69
S5 968 / 745 0.74 0.88 0.80 0.76
Average 0.70 0.85 0.77 0.78

Test Results
Subject Happy Ratio Pr Re F1 Acc
S1 110 / 348 0.43 0.53 0.48 0.72
S2 232 / 128 0.81 0.86 0.83 0.78
S3 337 / 103 0.86 0.98 0.92 0.86
S4 145 / 264 0.44 0.68 0.53 0.58
S5 235 / 197 0.71 0.85 0.77 0.73
Average 0.65 0.78 0.71 0.73

Fig. 4. Results of the ECoG classifier. Happy Ratio stands for the amount
of happy/not happy labels present. As expected, the classifier trained on
subject S1 performs the worst.

Subject Brodmann Area
3 6 7 10 19 20 21 36 38 40

S2 2 2 1
S3 1 2 2
S4 1 1 3
S5 2 1 1 1

Fig. 5. Five electrodes per subject most important for the happiness
prediction across Brodmann areas, excluding subject S1.

areas (BA7, BA6) or visual and language processing areas
(BA19, BA40).

The general trend of our results provides evidence that
our approach to assessing emotions from video data in a
naturalistic environment to then work with high-frequency,
high-volume information about the subject’s emotional state
can be a viable alternative method for further research in
the field, avoiding sparse emotion sampling or trials in
non-naturalistic environments. This is further supported by
the good performance metrics of the video classifier itself,
making its predictions reliable enough for further usage.
Notably, we were able to achieve our results using only stan-
dard machine learning tools, which facilitates interpretability
and quick adoption by others but also leaves room for
improvement in future works. Further, increasing the number
of subjects will increase the coverage of the electrodes and
will lead to more consistency in the observed brain regions
to allow for quantitative analysis of emotional processing
across patients. Investigating the kind of activities that trigger
certain emotions and their corresponding brain responses
would also be a possibility. Obtaining emotional data from
video recordings could likewise be used to augment other
methods of acquiring information on emotional states like
surveys in order to achieve a comprehensive understanding
of the relationship between subjects’ emotions and their brain
activity.
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