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Abstract— Brain-computer interface (BCI) based 

rehabilitation has been proven a promising method facilitating 

motor recovery. Recognizing motor intention is crucial for 

realizing BCI rehabilitation training. Event-related 

desynchronization (ERD) is a kind of electroencephalogram 

(EEG) inherent characteristics associated with motor intention. 

However, due to brain deficits poststroke, some patients are not 

able to generate ERD, which discourages them to be involved in 

BCI rehabilitation training. To boost ERD during motor 

imagery (MI), this paper investigates the effects of 

high-frequency repetitive transcranial magnetic stimulation 

(rTMS) on BCI classification performance. Eleven subjects 

participated in this study. The experiment consisted of two 

conditions: rTMS + MI versus sham rTMS + MI, which were 

arranged on different days. MI tests with 64-channel EEG 

recording were arranged immediately before and after rTMS 

and sham rTMS. Time-frequency analysis were utilized to 

measure ERD changes. Common spatial pattern was used to 

extract features and linear discriminant analysis was used to 

calculate offline classification accuracies. Paired-sample t-test 

and Wilcoxon signed rank tests with post-hoc analysis were used 

to compare performance before and after stimulation. 

Statistically stronger ERD (-13.93±12.99%) was found after real 

rTMS compared with ERD (-5.71±21.25%) before real rTMS 

(p<0.05). Classification accuracy after real rTMS 

(70.71±10.32%) tended to be higher than that before real rTMS 

(66.50±8.48%) (p<0.1). However, no statistical differences were 

found after sham stimulation. This research provides an 

effective method in improving BCI performance by utilizing 

neural modulation. 

 
Clinical Relevance— This study offers a promising treatment 

for patients who cannot be recruited in BCI rehabilitation 

training due to poor BCI classification performance. 

I. INTRODUCTION 

Stroke has rapidly become the leading cause of severe 
motor disabilities which brought about a great need for 
effective rehabilitation therapies. The potential for motor 
recovery can be increased by reestablishment of functional 
sensorimotor loop [1]. 
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The advantage of brain-computer interface (BCI) 
rehabilitation training lies in its mechanism to close the 
sensorimotor loop between motor intention and actual 
movement [2]. In BCI practice, recognizing motor intention is 
crucial for the efficiency of BCI training. However, BCI 
illiteracy problem is a common phenomenon in almost all 
kinds of BCIs [3], even for healthy practitioners. Considering 
moderate to severe brain deficits of stroke patients, 
motor-related cortical activities may be decreased or even 
hindered [4], which causes difficulties in detecting motor 
intention. Research has shown that event-related 
desynchronization (ERD) is a kind of electroencephalogram 
(EEG) inherent power characteristics associated with motor 
intention and often used to evaluate cortical activity [5, 6]. 
ERD can be easily detected during motor imagery (MI) and 
without need of actual movements [7], which is suitable for 
disabled patients. Enhancement of ERD contributes greatly to 
motor intention detection during BCI practice [8]. 

Non-invasive brain stimulation (NIBS) has been explored 
with great achievements in motor recovery, especially in 
cortical activity modulation, such as transcranial direct current 
stimulation (tDCS) and repetitive transcranial magnetic 
stimulation (rTMS) [9]. NIBS combined with BCI-based 
robotic therapy may greatly enhances the effectiveness of both 
treatments [10]. Ang et al. conducted tDCS before MI-BCI 
and results showed that averaged classification accuracy of 
using tDCS was higher than that of sham-tDCS [11]. rTMS 
has also been applied in motor recovery combined with BCI 
by suppressing the contralesional hemisphere, and results 
showed that increased relative ipsilesional cortical activation 
and significant alterations in inter-hemispheric inhibition was 
found in rTMS+BCI [12]. Besides suppressing the inhibition 
from the contralesional hemisphere, activating hemisphere 
with high-frequency rTMS has also been applied in clinical 
practice [13, 14]. Our study aims to explore the feasibility of 
boosting ERD by using rTMS, versus sham rTMS, and 
therefore improve MI-based BCI classification performance. 
To the best of authors’ knowledge, there is still lack of 
research concerning improving BCI performance by applying 
high-frequency rTMS. 

II. MATERIALS AND METHODS 

A. Subjects 

Eleven healthy subjects (age: 40.8±14.9, 5 female) 
participated in the experiments. All the subjects were 
right-handed without record of any neurological disorders and 
had no prior experience with BCI and MI before participating 
in the experiments. All subjects were informed of the 
experiment procedures before giving their written consent. 
The Ethical Committee of Beijing Rehabilitation Hospital of  
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Figure 1.  Experiment setup. (a) Time course of the experimental 

paradigm. (b) rTMS and sham rTMS. 

 

Capital Medical University approved all experimental 
procedures involving human subjects. 

B. Experiment Description 

As shown in Fig.1(a), the experiment consisted of two 
conditions: rTMS + MI and sham rTMS + MI, which were 
arranged on different days. As shown in Fig.1(b), rTMS was 
conducted using a Magstim stimulator (Magstim Company, 
Spring Gardens, UK) with a figure-of-eight coil. Stimulation 
locations of the contralateral motor areas were determined via 
EEG electrode cap. During the rTMS phase, the coil was 
placed on the area mainly consisting of channels C1, C3 and 
Cz (three blue-shade channels in Fig. 2); sham rTMS was 
conducted with the plane of the coil tilted  [15]. rTMS was 
applied for 20 min at a rate of 5 Hz and using an intensity of 
80% resting motor threshold (rMT). Motor imagery were 
arranged immediately before and after rTMS and sham rTMS. 
Thus, there were a total of 4 MI tests for each subject. During 
the MI tests, the monitor was placed approximately 1 m in 
front of the subjects. The MI test was divided into two tasks, 
consisting of 40 trials per task: rest and motor imagery. The 
two tasks were presented in a random order with 3-5 s random 
interval between each trial. Each trial started with a cross 
presented in the center of the monitor to instruct subjects to 
keep in idle state. After 3 s, a red upward arrow appeared to 
remind the subjects to imagine the right arm flexion until the 
cross disappeared from the monitor. If there was no arrow, 
subjects should just keep in resting state. 

C. EEG Recoding and Preprocessing 

During MI tests, EEG data were acquired using ANT 
eegoTM amplifier with 64 Ag/AgCl electrodes placed 
according to the international 10/20 system. Sampling rate 
was set as 500 Hz and electrode impendences were kept below 
5 k .The experiment paradigm was designed with OpenViBE  

 
Figure 2.  The electrodes used to measure ERD analysis and 

classification performance. 
 

2.0.1. EEG data were referenced to the common average 
reference with exclusion of the 32nd channel EOG and then 
band-pass filtered using finite impulse response (FIR) from 
0.5 to 40 Hz. Baseline corrections were performed before the 
artifacts were removed by an expert practitioner using 
independent component analysis (ICA). 

D. Time-frequency Analysis 

After the preprocessing, EEG data were divided into 40 
Task 1 trials and 40 Task 2 trials based on the trial marks. 
rTMS coil was placed over C3, C1 and Cz. Thus, the data from 
these three channels were analyzed to evaluate ERD changes. 
Time-frequency analysis of each trial was conducted using 
Morlet Wavelet in lower-alpha (alpha-, 8–10 Hz) and 
upper-alpha (alpha+, 10–13 Hz) range, respectively, with a 
step of 1 Hz. To maximize features and minimize noises, we 
computed the mean power spectral density (PSD) of 
low-alpha and up-alpha band respectively from the MI tasks 
with the following equation: 

 PSDb,c f,t =
1

m
 Pb,c(f,t)

m

tr=1

 

 

(1) 

where b indicates alpha- or alpha+ band, c is a specific 
channel, f is a specific frequency band, t is a specific time 
interval, m is the total number of trials of motor imagery task, 
tr is a specific trial, and P is the PSD of a specific trial.  

To analyze the ERD amplitude changes with respect to 
time, the ERD of the motor imagery state with respect to the 
idle state was computed with the following equation: 

 ERDb,c t =
PSDb,c t -PSDb,c,ID

PSDb,c,ID

×100% 
 

(2) 

where  indicates the mean PSD over specific 

frequency band of motor imagery state, and  

indicates the mean PSD over specific frequency band and 
specific time interval of idle state. 

To analyze the overall motor imagery performance, the 
ERD ratio of each channel was computed with the following 
equation: 

 ERDratiob,c=
PSDb,c,MI - PSDb,c,ID

PSDb,c,ID

×100% 

 

(3) 
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where  indicates the mean PSD over specific 

frequency band and time of motor imagery state. 

Several researches have proven that the most reactive 
frequency band may vary individually [6]. Thus, for each 
subject in the specific condition of experiment (rTMS or sham 
rTMS), the specific frequency band (b) for the above three 
equations was set by choosing the frequency band (alpha- or 
alpha+) that resulted in the maximum ERD ratio of motor 
imagery tasks pre and post rTMS or sham rTMS for each 
subject. To statistically depict the enhancement of cortical 
activation, paired-sample t-test with post-hoc analysis was 
used to compare overall motor imagery performance before 
and after rTMS/ sham rTMS respectively.  

E. Feature Extraction and Classification Algorithm 

The single-trial decoding accuracy between the task and 
idle states was used to evaluate offline MI-BCI performance. 
Common spatial pattern (CSP) was used to extract features 
from the preprocessed data filtered within 8-13 Hz. EEG data 
from the channels of stimulated-side sensorimotor cortex 
(signed with channel names in Fig. 2) were used as algorithm 
inputs. Linear discriminant analysis (LDA) was used to design 
classification models. 5-fold cross-validation was conducted 5 
times generating classification accuracies. Then, the 
classification performance of each subject was evaluated with 
the average classification performance and standard deviation. 
Due to the non-normality of the data, Wilcoxon signed rank 
tests with post-hoc analysis was used to compare overall 
classification performance before and after rTMS/sham rTMS 
respectively. 

III. RESULTS 

A.  Improvement of ERD Performance 

The grand average ERD amplitude changes over time for  

 
Figure 3. The grand average ERD amplitude changes over time of all 

subjects. The shaded region indicates standard deviation of ERD 

amplitude changes. Comparison of ERD amplitude (a) between 
pre-rTMS and post-rTMS, and (b) between pre-sham rTMS and 

post-sham rTMS. 

two experiment conditions were compared in Fig. 3. Fig. 3(a) 
shows that there were greater ERD amplitudes from motor 
imagery post-rTMS compared to pre-rTMS. Apparent 
differences in the two ERD amplitudes were found in time 
domain. However, Fig. 3(b) shows that no apparent difference 
was found in ERD amplitudes with respect to time between 
post- sham rTMS and pre-sham rTMS. 

Comparison of ERD ratio between pre-rTMS and 
post-rTMS was conducted by using paired-sample t-test with 
post-hoc correction. Results showed that ERD ratio from 
post-rTMS (-13.93±12.99%) was statistically significant 
compared to that from pre-rTMS (-5.71±21.25%) (p<0.05). 
However, no statistical differences were found in ERD ratio 
before and after sham rTMS (p=0.61). 

B. Enhancement of MI-BCI Performance 

Fig. 4 presents comparisons of offline classification 
accuracy with 5-fold cross-validation in different 
experimental conditions. Fig. 4(a) shows that all subjects 
achieved better classification performance in MI post-rTMS 
compared to pre-rTMS, except for S6 and S9. Classification 
accuracy after real rTMS (70.71±10.32%) tended to be higher 
than that before real rTMS (66.50±8.48%) (p<0.1) However, 
as shown in Fig. 4(b), no statistical differences were found in 
accuracy before and after sham rTMS (p= 0.86). 

 
Figure 4.  Comparison of offline classification accuracy (a) between 

pre-rTMS and post-rTMS, and (b) between pre-sham rTMS and 

post-sham rTMS. Error bars for each subject indicate standard 
deviation and for mean values indicate standard error of mean. 

+indicates p<0.1. 
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IV. DISCUSSION 

In our study, two conditions of the experiment, using 
rTMS and sham rTMS, were held to investigate the effect of a 
specific neural modulation technology on motor imagery 
practice. By comparing the ERD amplitude and MI-BCI 
classification performance, evidence has been provided that 
high-frequency rTMS modulation can result in enhancement 
of motor imagery performance. 

It has been previously proven that TMS modulation made 
positive effect on cortical and corticospinal activation both in 
healthy [16, 17] and stroke patients [18]. rTMS triggered by 
μ-rhythm has been proven to lead to long-term potentiation in 
corticospinal activation for healthy people [16]. Previous 
research also found relative ipsilesional cortical activation 
from fMRI after TMS modulation in stroke patients [12]. The 
results of this research provide more evidence to this 
conclusion. More importantly, our study further proved that it 
enhanced the motor-related cortical activities during MI 
practice. In our study, greater ERD features were found for 
five subjects after rTMS who had no apparent ERD during MI 
practice before rTMS modulations. Besides, several other 
forms of input stimulation have been also proven efficient in 
boosting ERD during BCI training, such as tactile stimulation 
[8] and immersive visual input stimulus [6]. It may inspire us 
that multisensory stimulus input could enhance cortical 
activation and naturally improve BCI performance. It is 
notable that apparent differences were found nearly at the 
beginning of MI practice in the ERD amplitude changes with 
respect to time as shown in Fig. 3(a). Besides, ERD amplitude 
increase was also found during cue period. ERD increase 
during cue period may result from preparation of instructed 
MI tasks. It shows that rTMS modulation can improve the 
performance of actual MI practice but whether it can influence 
the movement preparation patterns should be validated further 
in large populations.  

Research has shown that a part of subjects who are not 
proficient with BCI systems are called “BCI illiteracy” [19]. 
Much efforts have been made in solving the problem. 
Vidaurre et al. proposed a novel adaptation scheme in BCI 
practice, and results showed that better control over BCI 
system was obtained accompanied with sensory motor rhythm 
changes for BCI illiterates [3]. One of the most important 
factors for BCI illiteracy users is that they cannot generate 
detectable brain activity during BCI practice which can be 
characterized by no MI-related fMRI activity and ERD [20]. 
Accordingly, we can infer the possible solution to this 
problem is to enhance cortical activation and therefore be able 
to produce detectable electrophysiological features. On the 
whole view, for rTMS experiment, improvement of 
classification performance was found accompanied by a 
marked enhancement of ERD amplitude. However, not all of 
the subjects reacted positively to the intervention, consisting 
of S6, S9 and S10. Apparent ERD was still not found after 
rTMS intervention for S9. Classification performance depends 
on the differences between the task state and the idle state. 
Electrophysiological features’ changes of task states do not 
linearly correlate with the improvement of classification 
performance. In further studies, it may be worthwhile to 
explore electrophysiological features’ changes of idle states 

with rTMS modulation, which also influences the 
classification performance to some extent. 

Several limitations exist in the present study. This is a pilot 
study to explore the feasibility of boosting ERD and 
improving BCI classification performance by using 
high-frequency rTMS in healthy people. With the aim of 
applying this method in clinical practice, further validations 
should be conducted in stroke patients. Besides, for stroke 
patients, the cortical reorganization is individualized and the 
activation patterns are varied, such as contralesional 
compensations [21]. In the further validation, the personal 
activation pattern should be recognized first and rTMS can be 
applied on the interested brain area. 

V. CONCLUSION 

This research provides an effective method in improving 

BCI performance by utilizing neural modulation. It 

demonstrated, with rTMS modulation, a statistically 

significant improvement of ERD amplitude was found and 

classification accuracy after real rTMS tended to be higher. 

This study offers a promising treatment for patients who 

cannot be recruited in BCI rehabilitation training due to poor 

BCI classification performance. 
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