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Abstract — Passive detection of footsteps in domestic settings can 

allow the development of assistive technologies that can monitor 

mobility patterns of older adults in their home environment. 

Acoustic footstep detection is a promising approach for non-

intrusive detection of footsteps. So far there has been limited 

work in developing robust acoustic footstep detection systems 

that can operate in noisy home environments. In this paper, we 

propose a novel application of the Attention based Recurrent 

Deep Neural Network to detect human footsteps in noisy 

overlapping audio streams. The model is trained on synthetic 

data which simulates the acoustic scene in a home environment. 

To evaluate performance, we reproduced two footstep detection 

models from literature and compared them using the newly 

developed Polyphonic Sound Detection Scores (PSDS). Our 

model achieved the highest PSDS and is close to the highest score 

achieved by generic indoor AED models in DCASE. The 

proposed system is designed to both detect and track footsteps 

within a home setting, and to enhance state-of-the-art digital 

health-care solutions for empowering older adults to live 

autonomously in their own homes.  

I. INTRODUCTION  

Older adults tend to have a higher risk of physical accidents 
or falls as part of their daily lives [1]. The overall physical 
decline associated with aging can make such accidents the 
cause of serious complications with long term effects on an 
individuals’ health and wellbeing. Prior work [2] has 
demonstrated that the gait characteristics of an individual can 
be linked to potential risk of accidents. Indeed, detecting the 
walking patterns of older adults using wearable devices has 
been explored in the past, relying on the use of accelerometer 
sensors to capture and analyse gait characteristics. However, 
evidence suggests that older adults generally do not find smart 
wearables useful [3]. A recent study [4] concluded that 
whether an older adult actually uses a medical wearable in the 
long run directly depends on their present well-being and their 
need to continue wearing it.  This raises the question of 
suitability of wearable technologies for long-term continuous 
tracking of walking patterns for older adults.  

In this work we explore the feasibility of employing 
acoustic sensing, through sensors embedded in the 
environment, to detect and analyse walking patterns of older 
adults. Our objective is to develop techniques that will enable 
acoustic sensing devices deployed within a home (i.e., 
coexisting with voice assistants and similar devices), to act as 
gait sensing devices, namely for the detection of walking 
activities at home, and subsequent analysis of gait patterns 
within those activities. We term this approach acoustic gait 
analysis (AGA), which can be considered as a special case of 
acoustic event detection (AED) or acoustic event analysis 
(AEA).  

Traditional AED/AEA focus on the use of acoustic signals 
to identify general events that occur in specific settings. These 
can include events such as cooking, conversation, street  

 

 

traffic, etc. Our review of the literature available for AED and 
AEA provided three key insights:   

1. Most available datasets for AEA and AED contain 
nonoverlapping sounds, except for a few from DCASE 
[5].  

2. Many of the methodologies and models are developed 
and trained using acoustic datasets [6] recorded in 
controlled laboratory environments. These contain little 
or no background acoustic noise.  

3. There are very limited publications and research into 
applied AEA/AED for healthcare, and more specifically, 
in the field of geriatrics.   

The few publications [7] that do focus on AGA in 
indoor/domestic environments propose methodologies that 
predominantly assume isolated, non-overlapping audio 
events. However, real life recordings in a home environment 
are noisy and contain acoustic events that overlap with each 
other randomly (e.g., footsteps while the TV is on). Hence 
existing methodologies may not be suitable for use in real 
world settings.   

This paper summarises our approach to (i) use noisy 
overlapping audio stream in home environments of older 
adults; (ii) develop a footstep detection model that can isolate 
audio windows where human footsteps are present; (iii) 
demonstrate a novel application of the Attention mechanism 
and the Bidirectional LSTM layer to improve model 
performance over that for simple DNN, CNN or LSTM based 
models; and (iv) introduce a novel post-processing algorithm 
for "confidence" of predictions of presence of footsteps in 
detected audio windows.  

In Section II, we distinguish between overlapping and 
nonoverlapping AED and critically analyse the methodologies 
from two representative state-of-the-art approaches from this 
research area. In Section III, we explain our method and 
performance compared to those approaches, using a 
synthetically generated overlapping and noisy footstep sound 
dataset. In Section IV, we apply a recent evaluation criterion 
called the Polyphonic Sound Detection Score [8], adopted by 
DCASE, as the competitive metric for home environment-
based AED performance. We use this criterion on the 
detection results from the aforementioned models to compare 
their effectiveness against two alternative models driven by 
the current state-of-the-art in detecting footsteps from a real-
world audio setting containing noisy and overlapping sounds. 

  

II. BACKGROUND  

A. Overlapping vs Non-overlapping AED  

AED allows the detection of multiple acoustic events in an 

audio signal in contrast to typical classification problems that 

assigns a class label to a recording of one acoustic event. The 

complexity of AED largely depends on the way multiple 

acoustic events can occur in an audio signal. A simple AED 



  
 

 

task comprises detection of a sequence of temporally 

separated acoustic events [8, 9]. A more complex AED task 

involves detecting multiple overlapping acoustic events in the 

audio signal [10]. We use the term non-overlapping AED for 

the former and overlapping AED for the latter. Fig. 1 

illustrates the difference between non-overlapping and 

overlapping AED.  
In this paper, the environment we target is the indoor 

residential home of an older adult; sounds in this environment 
are typically noisy and involves overlapping acoustic sources 
such as television, telephone, kettle, doors, etc. as well as 
noises from residents and visitors.   

  

 
   

Figure 1. Non-overlapping v/s Overlapping audio [11]   

B. State of the Art in AED   

Haubrick et. al. [10] proposed a stacked multi-class neural 
network classifier using features extracted by the pretrained 
VGGish [12] model. This was trained on the AudioSet [13] 
dataset, to generalise over 635 acoustic events in different 
acoustic scenes. The training data distribution of the VGGish 
model includes a majority of outdoor events (which may be 
overlapping as well as non-overlapping) and therefore clearly 
differs from a residential indoors environment. We also note a 
contrast in the spectrum of typical acoustic events: Human 
footsteps have a frequency spectrum predominantly between 
10 - 300 Hz [14] while AudioSet events (speech, music, 
vehicles, animal sounds, etc.) generally have dominant content 
at higher frequencies. Furthermore, the VGGish pre-
processing pipeline computes STFTs over 960ms frames, far 
longer than typical single footstep durations of around 400-
600ms [14]. The STFT output is then integrated into 64 mel- 
frequency bins. The Mel spectrum and the well-known MFCC 
acoustic feature are generally used for speech analysis because 
the mel scale approximates how audio loudness is perceived 
by the human ear. However, 64 mel-bins over the audible 
frequency range does not yield good features for footstep 
events because their perceived loudness is severely reduced on 
a mel scale and the useful information is largely concentrated 
into only a few bins. The four mismatches, namely frequency, 
frame-length, bin-spacing, and training data, strongly 
motivate our proposed approach.  

Before the advent of Deep Neural Networks (DNNs) for 
audio classification, AED and AGA relied on classifiers using 
Support Vector Machines [7], Gaussian Mixture Models [15], 
Hidden Markov Models [16], Non-Negative Matrix 
Factorisations [17] and so on. For the related acoustic footstep 
detection task, we will thus compare our proposed DNN-based 

approach against a good example, the Nakadai et. al. [7] SVM-
based footstep detector. In that work, the audio data covered 
four acoustic event classes (footsteps walking, footsteps 
running, handclaps and speech), but all with nonoverlapping 
and clean sound events. As mentioned in Section I, such 
datasets are commonly used for AED, but are not suitable for 
evaluating systems that aim to operate in real world home 
environments. We thus re-evaluate both systems [7, 10] for the 
noisy, overlapping footstep detection task.  

III. METHODOLOGY  

Our objective in this section is to demonstrate the 
effectiveness of a novel application of an Attention based 
Recurrent Deep Neural Network (RNN) model for detecting 
footsteps from overlapping audio over traditional machine 
learning and neural network-based models. We evaluate our 
work by comparing it with our reproductions of Nakadai et.al 
[7] and Haubrick et. al. [10] (which uses SVM and CNN 
respectively) on our synthetic footstep detection dataset. All 
systems are trained and evaluated using synthetic audio data. 
The process of synthesising appropriate data was employed to 
allow us to generate a range of scenarios involving 
overlapping sounds that consists of footsteps as well as other 
ambient sounds.       

A.  Synthetic Overlapping Audio Dataset generation   

Although there is a vast collection of public acoustic data 
for general acoustic event classification, most of the available 
datasets do not contain acoustic data for footsteps. Available 
public sources that do, include the TUM GAID [6], ESC50 
[18] and AudioSet. TUM GAID from Technische Universität 
München consists of 3-second 16 kHz noisy footstep clips 
from 305 individuals, recorded in 3 different scenarios. These 
include walking normally, walking with a 5kg heavy backpack 
and walking with coating shoes, and incorporates variations in 
gait. ESC50 consists of 2000 5-second clean audio clips from 
50 different acoustic event classes at 44.1 kHz, out of which 
40 clips are of human footsteps. ESC50 was compiled from 
the publicly available Freesound Project [19]. AudioSet offers 
machine-labelled low-quality footstep events across 1683 
Youtube videos detected at a 90% confidence level.   

To train and evaluate our work we relied on audio 
synthesis to create a sizeable dataset of sounds that contain a 
mix of overlapping and clean sounds, including footsteps, and 
other sounds that are typically present in indoor environments. 
The synthetic dataset was produced using “scaper” [20], a 
library recommended by DCASE, to generate overlapping 
audio files with a random number of predefined acoustic event 
classes and random ambient background noise. The source 
files used for the synthetic dataset consist of three classes:  

• Footsteps: sources from TUM GAID and ESC50 sets, 
containing 3,400 and 40 footstep audio files  

• Ambient home sounds: sources from HoME dataset, 
3,440 randomly sampled files of various acoustic events 
in indoor scenes; DEMAND48 dataset [21] ambient 
sounds in Living Room, Hallway and Kitchen.  

• Noise: An hour-long Brown Noise [22] audio and an 
hour-long White Noise [23] audio from YouTube.  

We generated the synthetic dataset with the intention to 
produce a random mixture of overlapping sounds using these 



  
 

 

sources. We produced 2,000 12-second clips at 44.1 KHz with 
the following configuration for the synthesis: background 
noise levels at -3 dB; events per clip uniformly selected 

between 1-5; duration of events per clip 𝜇 = 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 𝜎 = 
2; duration of background noise uniformly selected between 
2-5 seconds; SNR for events with respect to noise uniformly 
selected between 6-30; pitch variation for every event 
uniformly selected between -3 and 4 octaves; time stretching 
variation for each event uniformly selected between 60% and 
130%. We chose a clip duration of 12 seconds as a trade-off 
between adequacy for realism in the study, and of storage and 
computing resources. The 1200-clip dataset was found to have 
2494 footstep events (labelled “footsteps”) and 2510 other 
acoustic events (found in the home environment, labelled 
“others”) with an average of 3 acoustic events per clip which 
may or may not overlap. The number of clips in the training, 
validation and testing dataset are 867 (72.25%), 153 (12.75%) 
and 180 (15%) respectively.   

B.  Reproducing Nakadai et. al. on our synthetic dataset  

The specific model adopts a typical shallow approach for 
acoustic event classification. As a pre-processing step, the 
system identifies a potential event directly from the input 
audio signal by detecting peaks separated by a pre-set 
minimum distance and surrounded by a pre-set background 
noise level. The audio segment around the peak is clipped and 
pre-processed to extract 6 time-domain, 7 spectral, 4 
geometric and 24 MFCC features and form a 36-dimensional 
feature vector. The 36-dimensional feature dataset is directly 
fed into a multi-class SVM with Radial Basis Function (RBF) 
as the kernel.  

C.  Reproducing Haubrick et. al. on our synthetic dataset  

The first component of the proposed system uses the 
VGGish pretrained model as a feature extractor. Pre-
processing thus follows the pretrained model setup process 
described in the original paper [12]. The output is a 128-
dimensional feature dataset. We use a three 3-layer deep 
binary classifier with yielding 6-dimensional vector of output 
probabilities which are then refined in a 2-layer, 2-node 
classifier, since our dataset has only two acoustic event 
classes: ‘footsteps’ and ‘everything else’.   

D. Implementing our proposed system  

Our system performs footstep detection in 3 phases. In the 
first phase, an audio signal is converted into a spectrogram 
matrix and split into 2-second windows with 50% overlap. In 
the second phase, the DNN classifies each spectrogram 
window as ‘1’ (footsteps) or ‘0’ (others). In the third phase, 
predictions for the overlapping windows are post-processed to 
infer the presence of footstep events.   

Our model architecture is based on the findings of [24, 25]. 

The rationale is [24] reported a 15.1 % increase in 𝑓(1) score 
for multilabel AED using Bidirectional LSTMs over DNNs 
while [25] found that Bidirectional LSTMs when paired with 
an Attention layer is better for Acoustic Scene Classification 
than traditional NN structures like DNN, CNN or simple 
LSTMs. For pre-processing, the input audio is down sampled 
to 16 kHz, divided into the overlapping windows of duration 
2 seconds and overlap of 1 seconds, converted into a 
spectrogram with a 40ms frame window, NFFT window of 64 

ms and overlap of 32ms. The model accepts the transpose of 
the spectrograms, directly as input. We paired a Bidirectional 
LSTM-Attention layer with another LSTM layer for feature 
extraction. The three layers are then connected to a DNN with 
3 hidden layers and 2 output nodes for classification. Figure 2 
visualises our model architecture. We then introduce our novel 
post-processing algorithm wherein we reinterpret the binary 
output of our classifier model. We then converted the 
generated timestamp annotations from the acoustic signal 
synthesiser [20] for every synthetic clip into binary signals of 
same length as the clip. The 1’s in the binary signals represent 
the footstep windows in the corresponding synthetic clips. 
When we create overlapping spectrograms, the binary signal 
windows are converted into a single binary label. The label 
interpretation is set during conversion: a spectrogram window 
will be labelled as "1" if it contains footsteps events covering 
more than a threshold proportion (currently set to 60%) of the 
window duration. A "0" label indicates that a window has 
fewer footstep events than threshold, implicitly indicating 
stronger presence of "other" acoustic events. During inference, 
the binary prediction vector obtained for the input signal over 
time is pooled in pairs. The resultant vector belongs to the 

domain {0, 1, 2}. This provides a good estimate of model 
prediction confidence. Figure 3 illustrates the concept 
diagrammatically.  

1. "0" now means that the model has no confidence in the 
presence of footsteps in an audio window  

2. "1" now means that the audio window contains footsteps 
covering less than the threshold duration  

3. "2" means that the audio window contains footsteps 
covering more than the threshold duration  

 

 
  

Figure 2. Proposed 3-layer DNN with bidirectional LSTM and Attention   

IV. SYSTEM EVALUATION  

Bilen et. al. [8] proposed a new metric of evaluation of AED 
models working with overlapping audio. It presents a score 



  
 

 

called Polyphonic Sound Detection Score (PSDS) which aims 
to deliver well-rounded insights into the performance of such 
AED models. Overlapping AED evaluation is prone to 

multiple misapplications of the 𝑓(1) score and error rate 
miscomputations due to conventional boundary-based event 
annotations. We applied PSDS on the predicted boundaries of 
footstep and other acoustic events on the withheld dataset from 
Section III and compiled individual metrics for our two 
acoustic event classes, as depicted in Table 1.  

 
 Figure 3. Our Inference Process for footstep detection  

TABLE I. Evaluation of three implementations with PSDS, 𝑓(1) and AUC  

Model   PSDS  𝒇(𝟏) for 

“footsteps”  
𝒇(𝟏) for 

“others”   
AUC  

Nakadai et. al.  0.38  0.61  0.71  0.66  

Haubrick et. al.  0.41  0.86  0.83  0.86  

Proposed approach  0.65  0.89  0.94  0.92  

 

V. CONCLUSION   

In this paper we presented a novel application of the 
Attention based Bidirectional LSTM DNN model with a novel 
post-processing algorithm to confidently isolate human 
footsteps in a noisy, overlapping home acoustic scene. We 
evaluated the proposed approach against two systems which 
employed SVM and VGGish respectively. The proposed 

architecture outperformed the other systems in 𝑓(1) and AUC 
scores. This was confirmed when evaluated with the more 
recently defined PSDS metric for assessing overlapping sound 
detection. We believe model performance would improve 
further if benchmarked gait datasets from real environments 
become available instead of datasets which are recorded using 
professional equipment in a controlled environment. As future 
work, we therefore intend to use standard consumer equipment 
to record gait data from real environments and develop robust 
gait analysis systems that work with low quality audio 
containing overlapping events. In addition, we will be 
exploring acoustic source separation methods for acoustic 
events other than speech in older adult care environments and 
use real life data. Isolating footsteps will assist in extraction of 
temporal gait parameters for older adults living with or are 
showing symptoms of onset of dementia in commercial care 
homes. 
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