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Abstract— The adoption of electronic health records (EHRs)
has made patient data increasingly accessible, precipitating
the development of various clinical decision support systems
and data-driven models to help physicians. However, missing
data are common in EHR-derived datasets, which can in-
troduce significant uncertainty, if not invalidating the use of
a predictive model. Machine learning (ML)-based imputation
methods have shown promise in various domains for the
task of estimating values and reducing uncertainty to the
point that a predictive model can be employed. We introduce
Autopopulus, a novel framework that enables the design and
evaluation of various autoencoder architectures for efficient
imputation on large datasets. Autopopulus implements existing
autoencoder methods as well as a new technique that outputs
a range of estimated values (rather than point estimates), and
demonstrates a workflow that helps users make an informed
decision on an appropriate imputation method. To further
illustrate Autopopulus’ utility, we use it to identify not only
which imputation methods can most accurately impute on
a large clinical dataset, but to also identify the imputation
methods that enable downstream predictive models to achieve
the best performance for prediction of chronic kidney disease
(CKD) progression.

Clinical relevance— Enable investigation of autoencoders for
imputation of large clinical datasets, and investigate the impact
of imputation on downstream tasks instead of in isolation.

I. INTRODUCTION

The widespread adoption of electronic health records
(EHRs) has ushered in a new age of data-driven medicine,
with a significant number of artificial intelligence (AI)-based
methods being explored to provide new insights from the
growing number of patient records. However, the variation in
healthcare delivery complicates the analysis of such datasets,
especially issues like missing data. Most predictive models
are unable to handle missing values well, if at all. One way
missing data are commonly dealt with is by removing the
rows or features with missing data. Removing features with
missing data is not always tenable as those features might be
important predictive factors. Similarly, dropping observations
with missing data poses issues such as: reducing the dataset
size significantly, or introducing bias by limiting the dataset
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to observations with features that are well-populated but
may not be randomly distributed. For example, in an EHR
dataset, sicker patients require more tests and visits than
healthier patients and are less likely to have missing values,
so dropping patients with missing values might bias the
dataset towards these less healthy patients.

Another common approach to handling missing data is
substituting missing values with estimates on the missing
values, which is known as imputing. While imputation seems
more appealing than dropping potentially useful information,
using the wrong imputation method may degrade the quality
of prediction. To properly impute missing data, it is important
that the method impose a reasonable assumption about the
missingness mechanism for the data [1]: missing completely
at random (MCAR), missing at random (MAR), and missing
not at random (MNAR) [1]. Many imputation techniques
exist and are frequently used. The simplest forms of imputa-
tion are those such as mean or mode, (stochastic) regression,
nearest neighbor(s), and carry forward/backward imputation.
While these are simple, fast, and easy to implement, they
underestimate standard error by reducing variability and ulti-
mately produce biased estimates. Another approach involves
maximum likelihood and/or multiple imputation, (such as
multiple imputation by chained equations, MICE). While
these methods are guaranteed to produce unbiased estimates
under MAR, they are computationally expensive and time
consuming and will produce biased estimates under MNAR.
Existing methods that can model data MNAR in addition to
MAR, such as pattern mixture models [2], rely on Monte
Carlo methods that are computationally slow.

As an alternative, we explore the use of autoencoders as a
tool for imputation on EHR data. One benefit of autoencoders
for imputation over the previously mentioned methods is
their ability to rapidly impute on large datasets, such as
EHR datasets, and quickly learn nonlinear relationships.
However, despite the appeal of autoencoders for imputa-
tion, there are no theoretical proofs on their behavior. As
such, we developed Autopopulus to empirically study the
potential of autoencoders for imputation. Autopopulus allows
us to efficiently compare different autoencoder methods in
addition to assisting in identifying the best technique for
the given dataset and task at hand, focusing on data MAR
and MNAR—the most common scenarios for EHR data.
We expand upon prior literature by taking a closer look
at how accurately autoencoders can learn to impute an
EHR dataset with missing values, and how that imputation
affects downstream predictive performance. To demonstrate
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Autopopulus and our approaches, we use the Center for
Kidney Disease Research, Education and Hope (CURE-
CKD) dataset [3], [4] to identify individuals at-risk for
and with chronic kidney disease (CKD). We implemented
several existing autoencoders for imputation, as well as
our own approach for imputation that utilizes a completely
discretized formulation of the data. We find that different
imputation methods perform best under different missingness
scenarios, although the overall downstream performance on
the prediction task does not vary much for this dataset.

II. RELATED WORK

There are many types of autoencoders. An autoencoder
is undercomplete when the code (the output of the encoder)
is smaller than the input, acting as lossy compression, and
is overcomplete when the code is larger than the input.
As opposed to a vanilla (i.e. regular) one, in a variational
autoencoder (VAE), the encoder outputs two vectors: one of
means and standard deviations, detailing a Normal distribu-
tion, rather than a single vector of raw values. Due to this
nature, VAEs also require an additional loss term to penalize
differences between the learned and true distribution. In
a denoising autoencoder (DAE), the inputs are partially
corrupted (e.g., set to zero or adding noise). In an imputation
context, a DAE would treat missing values as noise.

Variational autoencoders [5] have seen success in imputa-
tion on data MNAR and MCAR in myriad domains including
traffic forecasting [6], synthetic and simulated milling circuit
data MCAR in McCoy et al.’s work [7], and facial image
data MAR [8]. Unlike biomedical and EHR data, however,
these datasets involve automated data collections systems and
can be modeled with clear Gaussian distributions. Camino et
al. [9] explored the effectiveness of variational autoencoders
across tabular data in different domains such as breast cancer
data, credit card data, and optical character recognition data.
For high dimensional data, Chen et al. [10] proposed sparse
convolutional denoising autoencoders to impute yeast and
human genotypic data. They leveraged the added complexity
of convolutional layers and a sparse weight matrix to make
imputation of high dimensional data tractable. Gondara et
al. proposed MIDA (Multiple Imputation using Denoising
Autoencoders), an approach that uses an overcomplete de-
noising autoencoder with the assistance of simple imputation
methods such as mean or mode imputation [11]. Beaulieu-
Jones et al. proposed denoising autoencoders for the impu-
tation of EHR data on patients diagnosed with Lou Gehrig’s
disease [12].

While the use of autoencoders for imputation has been
previously explored, it is notable that their effect on down-
stream predictive performance has not been analyzed and the
context in which any of these techniques may be optimal is
unclear. This observation prompted our development of an
open framework that would enable the rapid implementation
of different autoencoder imputation methods on a dataset,
comparing imputation performance and the sensitivity of a
given predictive task relative to inferred missing values.

III. METHODOLOGY
With Autopopulus, we aim to provide an extensible

framework for developing, testing, and ultimately comparing
different autoencoder imputation methods. We show its usage
by drawing on the work of McCoy et al., Gondara et al., and
Beaulieu-Jones et al. in addition to implementing a novel
autoencoder imputation technique. We designed Autopopulus
so it can be used in the same fashion as a Scikit-learn [13]
imputation model. This lends to easy and intuitive use for
future datasets as it interfaces well with widely used tools
with minimal overhead. The entire imputer training pipeline
is shown in Fig. 1 and we describe key elements below.

a) Data processing: The input to our model is a dataset
X̂ and label X , which is the unaltered or true version.
Autoencoders are not designed to handle missing values by
default, so the first step taken is filling in missing values in
X̂ , and also X if the true dataset also has missing values.
For example, in McCoy et al. and Beaulieu-Jones et al. this
is done by filling in missing values with 0, while in Gondara
et al. it is done by a “warm start” with simple imputation.

b) Autoencoder architecture: As mentioned prior, au-
toencoders come in many flavors. Depending on the nature
of the dataset or problem, we must specify a type of
autoencoder. For example, McCoy et al. specify a VAE, while
Beaulieu-Jones et al. use a DAE.

c) Loss: The reconstruction losses supported by Au-
topopulus are binary cross-entropy (BCE), mean squared
error (MSE), and a combination that applies BCE only to
categorical variables and MSE to continuous variables. When
the autoencoder is not a VAE, loss is purely reconstruction-
based. When the autoencoder is a VAE, we add an extra
Kullback-Leibler (KL) divergence error term in addition to
the reconstruction loss. For each implemented method we
choose the loss employed in their respective paper.

d) Training: For each implemented method we chose
the optimizer employed in their respective paper. We tuned
the number of layers and nodes per layer, learning rate, L2
penalty, maximum epochs, and early stopping patience on the
validation set using an automatic sweep of hyperparameters
with asynchronous hyberband scheduling (ASHA) [14].

e) Output: Once loss has been calculated, model output
is further processed before computing imputation perfor-
mance metrics. The same steps are employed when using the
model for imputation after training. We apply the sigmoid
function only to the categorical variables. Note that this
might be slightly different in the experiments if implement-
ing a method from the literature that otherwise applied a
sigmoid at the output to all variables whether or not they
were categorical, or if there are no categorical variables and
are using MSE loss. Lastly, all methods are only used to fill
in missing values, so the original values are otherwise kept.

A. Implementation
We implemented the system1 using Python, Pandas [15],

and NumPy [16], and PyTorch-Lightning [17].

1The implementation is available at
https://github.com/davzaman/autopopulus.
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Fig. 1. The data pipeline for training the autoencoder. Data are either initially filled with a constant value such as 0, or data are discretized and a
uniform distribution is imposed over missing values. Note if the latter is true, the ground truth is also discretized before being fed to the autoencoder, and
the autoencoder output is un-discretized. After training the autoencoder, its output is only used to fill originally missing values.

B. Enabling Experiments to Compare Imputation Methods

Using Autopopulus, we can compare autoencoder-led im-
putation methods to baseline methods. Autopopulus supports
comparing to some of the most popular imputation methods
such as mean and mode, k-nearest neighbors, and MICE, and
is readily extended to include further techniques.

In addition to allowing imputation on incomplete raw
datasets, Autopopulus also supports experiments with con-
trolled missingness scenarios, shown in the first steps of
Fig. 1. Via Autopopulus, we can choose which features to
ampute (i.e. mask) via which mechanism, and at what per-
centage. For data MCAR, we replace a value with NaN (not
at number) uniformly at random for selected variables. For
data MAR we create a cutoff, determined by the percentage
of missingness specified, on an observed variable. If a given
data entry falls above the cutoff, the value for the chosen
missing variable will be NaN, simulating the scenario where
the value is missing due to another observed variable. For
data MNAR we create lower and upper cutoffs based on the
variables that will be missing themselves (e.g., a historically
normotensive patience opts to not have their blood pressure
measured). If a patient falls inside the cutoff range, the
value will be missing, simulating the scenario where the
value is missing due to the value itself. Under MAR we can
choose which observed features we would like to control the
missingness of each of the missing features.

C. Adding New Imputation Methods

Alongside existing autoencoders used for imputation, we
used Autopopulus to design a new technique for compar-
ison, showing how the framework can be extended. In this
method, the data are discretized (into one-hot features) and a
uniform distribution imposed across the discretized variables
wherever a value is missing as a data preprocessing step. The
goal of the autoencoder is to take the uncertainty, modeled
by a uniform probability, for any given missing variable and
learn to shift weight onto the discrete bin that most likely
represents the true value. For example, if age is discretized
into 10 bins and its value is missing, then each bin has a
10% probability of being the “true” bin. We replace the
missing value with this uniform probability. The data X̂
are passed through the autoencoder model and the result
is then compared to the label X according to a given loss
function to train the model. We employ minimum description

length (MDL) discretization via the Orange package to
automatically create bins [18], [19]. MDL discretization is
a supervised algorithm that recursively decides the split that
minimizes entropy and minimum description length princi-
ples as well as the labels assigned to each sample. We chose
this discretization method to be able to employ Autopopulus
on a wide array of datasets quickly and because it has
been used successfully on clinical data in the literature [20].
However, it is possible to use Autopopulus with manual or
other means of discretization.

Here, we choose a vanilla autoencoder with BCE loss
for the reconstruction error and train using the Adam op-
timizer [21]. We use BCE instead of mean-squared error
because our inputs are either binary due to discretization,
or continuous between 0 and 1 after imposing a uniform
distribution across bins for a missing variable. Imposing a
uniform probability across missing values maximizes entropy
for the missing value, which is then penalized by the BCE
loss, forcing the autoencoder to focus on correcting for
missing values.

In order to allow a more direct comparison to other
imputation methods, we first “un-discretize” the output. To
un-discretize the data, we map the originally-continuous vari-
ables down to the mean of their most likely bin (the one with
the highest score). For example, if age was discretized into
10 bins, and the autoencoder yielded the highest score for
the range (50,60], then the patient’s age would be estimated
to be 55 years.

IV. EXPERIMENTAL DESIGN

A. Data

a) CKD cohort: We evaluated Autopopulus using the
CURE-CKD Registry [3], [4]. CURE-CKD comprises a
comprehensive, real-world, longitudinal dataset of EHR-
derived data from two large healthcare systems (Providence
St. Joseph Health and University of California, Los Angeles
Health; UCLA) over a period of 12 years (2006-2017).
Patients included are adults over the age of 18 categorized
into one of two cohorts: diagnosed with CKD or flagged as
“at-risk” for CKD (diagnosed with diabetes (DM), hyperten-
sion (HTN), or pre-DM), based on diagnostic administrative
codes, laboratory data, vital signs, and medications. Patients
entered and exited the registry that generated the dataset at
different points over the 12-year period, resulting in different
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history lengths for each patient. For this study, we limited
our cohort to patients with CKD only.

The prevailing method for testing for CKD and tracking
disease progression is measuring the estimated glomerular
filtration rate (eGFR) [22]. Predictive models are being
developed to identify individuals who would experience rapid
kidney function decline, defined as a 40% decline in eGFR
over two years [23]. There are 4, 067 patients in the positive
class (experiencing rapid decline), which make up 4.59% of
the 88, 560 patients diagnosed with CKD. There are 9, 062
(10.23%) patients that are not missing any data.

b) Variables and Missingness: We define study-entry as
the date of the first serum creatinine measurement during the
observation period for a patient. We define time-zero entries
as the mean of measurements in the first 90 days after the
first serum creatinine measurement. We use the study-entry
and time-zero entries (eGFR, A1c, systolic blood pressure,
and number of ambulatory and inpatient visits) in addition
to demographic information (age, sex, ethnicity, and rurality
status) and risk factor information (diagnosis of HTN, DM,
or pre-DM, and use of angiotensin-converting enzymes in-
hibitors (ACEIs) and angiotensin receptor inhibitors (ARBs))
to predict rapid kidney function decline in patients in the
two years from registry entry. Notably, 74.5% of A1c entries
are missing at study-entry and 71.9% at time-zero. 60% of
systolic blood pressure entries are missing at study-entry and
60.5% at time-zero.

c) Data Preprocessing: All continuous variables are
standardized using a min-max scaler, and all categorical
variables are one-hot encoded before being handled by
Autopopulus.

B. Experiments

Two sets of experiments were conducted to answer two
investigative questions: the ability for various imputation
methods to create an accurate representation of the dataset
(Fig. 1); and the impact of missingness and imputation on
downstream prediction (Fig. 2).

Original Dataset

Impute

Random
Forest

Logistic
Regression

Predictions

Predictions

Metrics

Fig. 2. The data flow for the predictive task. Imputation is done with either
baseline methods such as k-nearest neighbors (KNN), or an autoencoder-led
method. If using an autoencoder-led method, the autoencoder is trained first
and then used to impute the dataset.

In our first set of experiments (Experiment Set 1), we filter
the dataset down to the fully observed subset of data and
ampute according to different mechanisms and at different
missingness rates. In this set of experiments, we test the mean

arctangent absolute percent error (MAAPE) and root mean
squared error (RMSE) by amputing at both a low and high
percentage of missingness (33% and 66%) across all three
missingness mechanisms (i.e., MCAR, MAR, and MNAR).
These experiments explore an imputation method’s ability to
create an accurate representation of the data and can control
for performance given different levels of missingness and
mechanisms. In the second set of experiments (Experiment
Set 2), we use the entire dataset “as is” to explore the
effect of imputation on predictive performance via the Brier
score (calibration), precision-recall area under the curve
(PR-AUC), and receiver operating characteristics area under
the curve (ROC-AUC) for classifying rapid decline. We
used a train, validation, test split of 60%, 20%, and 20%
respectively both for training the autoencoder and for training
the predictive models.

We selected systolic blood pressure and A1c to be missing
for the following settings as they are also missing in the
original dataset. For data MAR we use the observed eGFR
variable to create a cutoff. Thus, if a patient falls above the
cutoff, their systolic blood pressure and A1c will be missing.
For data MNAR, if a patient falls inside the cutoff range,
their systolic blood pressure and A1c will be missing.

1) Imputation Comparison (Experiment Set 1): We com-
pared MIDA [11]; a denoising autoencoder proposed by
Beaulieu-Jones et al. [12] (DAE); a variational autoencoder
proposed by McCoy et al. [7] (VAE); and our new method
based on a vanilla autoencoder (APnew) (Section III-C).
Architectures, losses, optimizers, and data preprocessing
all match their original descriptions. The baseline methods
include simple, k-nearest neighbors (KNN), and MICE im-
putation. We refer to simple imputation as mean imputation
for continuous variables and mode imputation for categorical
variables.

2) Predictive Task (Experiment Set 2): Here, our task
involves using the imputed data to predict if a patient
diagnosed with CKD will experience rapid kidney function
decline in the next two years. In order to explore whether
linear or non-linear predictive models are better suited for the
predictive task, we trained both a logistic regression model
and a random forest model on top of the autoencoder outputs.
We trained the models to be sensitive to the positive class due
to the dataset being highly imbalanced by taking advantage
of class weights. Hyperparameters for the logistic regression
and random forest models were tuned during validation
automatically via Scikit-learn. Each predictive model was
trained on 100 stratified bootstrapped samples. The logistic
regression and random forest models were implemented via
Scikit-learn [13]. We tuned using the Tune framework [24].
The 95% confidence intervals and means for each classifi-
cation performance metric, such as PR-AUC, were produced
from this bootstrapping process.

V. RESULTS

We used Autopopulus to compare autoencoder imputations
methods.

2306



A. Experiment Set 1: Imputation Accuracy

We report metrics computed only where the data were
originally missing for imputation performance. Values that
were not originally missing are kept at the end of the
pipeline, so we are largely interested in the performance on
originally missing values only. Fig. 3 shows that different
imputation methods create more accurate representations of
the missing data under different missingness mechanisms,
and those patterns remain similar across the amount of
data missing. All models achieve lower error under MNAR
compared to MAR and MCAR. Under MAR, the RMSE
under 33% missing is minutely larger than 66% missing. Un-
der MCAR and MAR, MICE achieves the lowest MAAPE.
However, under data MNAR, the VAE proposed by McCoy
et al. achieves the lowest error. In general, under MNAR
the autoencoder imputation models tend to achieve lower
error than the baseline models, aside from APnew. APnew
produces a large error across all missingness scenarios.

APnew uniquely discretizes and then undiscretizes the
data. Therefore, only for this approach are we interested in
the amount of times the autoencoder correctly guesses a bin
for an originally continuous feature before undiscretizing.
We evaluate this accuracy over the bins for missing values
only in Table I. We observe that the autoencoder is fairly
accurate under MCAR and MNAR for both percentages of
missingness, but struggles more with data MAR.

Fig. 3. Imputation performance captured via MAAPE and RMSE for
each imputation method across missingness scenarios, computed only on
the missing values. Every column is a different missingness mechanism, and
each row is a single imputation metric. The y-axis range differs between
MAAPE and RMSE for a closer inspection of the performance under each
metric. Note that MAAPE is a percentage reported as a decimal value, while
RMSE is a non-negative decimal score.

B. Experiment Set 2: Predictive Performance

Fig. 4 shows that the logistic regression model is in general
less calibrated than the random forest model regardless of
which imputation method is used. Though the difference is
small, the autoencoder-based imputation methods tend to be

TABLE I
ACCURACY OVER BINS (ONLY APNEW)

Mechanism Percent Accuracy Over Bins

MAR 33.0 0.626
66.0 0.699

MCAR 33.0 0.804
66.0 0.842

MNAR 33.0 1.000
66.0 0.864

slightly less calibrated than the baseline methods; however,
APnew is the best calibrated autoencoder imputation method.

The imputation method used did not have a large impact
on the PR-AUC and ROC-AUC when using a random
forest model. But in general, the baseline predictive methods
produced better results when using a logistic regression.
Markedly, the PR-AUC and ROC-AUC for MIDA almost
exactly mirrors simple imputation no matter which pre-
dictive model is used, which calls into question whether
MIDA offers much advantage beyond simple imputation for
the downstream task on this dataset. The remaining three
autoencoder-based imputation methods perform similarly
across both predictive models. The most calibrated predictive
models were trained on data imputed with either MICE or
APnew. Across all imputation methods the logistic regression
model offers tighter confidence intervals and better Recall
but overall poorer performance regarding calibration (Brier
score), Precision, PR-AUC, and ROC-AUC. Do note that
the Brier score acts as a loss, where a larger value means
poorer calibration. MICE imputation produces a very similar
PR-AUC whether using a logistic regression or a random
forest model for prediction. KNN imputation produces a very
similar ROC-AUC whether using a logistic regression or a
random forest model for prediction. Another point of interest
is the relatively poor PR-AUC across all imputation methods
and predictive models. Upon closer inspection, we notice
that the precision is extremely poor while recall is more
acceptable. Both the logistic regression and random forest
struggle with false positives on this dataset.

C. Discussion

Autopopulus enabled us not only to easily implement
multiple autoencoders with a consistent interface and unified
training pipeline, but also allowed us to explore their perfor-
mance on the same dataset and under different missingness
scenarios, including MAR and MNAR. Autopopulus enabled
the use of data with mixed feature types (continuous and
categorical), such as the CURE-CKD dataset, instead of as-
suming one type. We can identify patterns across missingness
mechanisms, on the hypothesis that each mechanism behaves
differently. For example, when comparing imputation metrics
across methods we saw better imputation performance on
data MNAR over data MAR across imputation methods, even
though MNAR is famously difficult to handle. In this case,
this observation may be due to the steps Autopopulus takes
to simulate MNAR, which may be too simplistic compared
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Fig. 4. Average predictive performance for each imputation method on the entire dataset as-is for the predictive models across bootstraps. The true
negatives, false positives, true positives, and false negatives are all reported as counts. The remaining metrics are percentages reported as decimal values.
Note that the Brier score is in fact a loss, where smaller is better.

to real-world series of events. Autopopulus also allowed
us to easily test which imputation methods would perform
best in different missingness scenarios. Per prior findings in
the literature, under MCAR and MAR, MICE consistently
performs best, though sometimes only marginally. However,
under MNAR the VAE performed best. For the CURE-CKD
dataset, this finding may be due to how we simulate MNAR
by specifying lower- and upper-bound cutoff thresholds
on the missing variables themselves. The encoder portion
of a variational autoencoder produces means and standard
deviations, defining a normal distribution for each input. This
likely made it “easier” for the VAE to guess that the missing
values were in the tails of the distributions, if its inferred
means and standard deviations were accurate enough.

Through Autopopulus, we were also able to investigate
how the different imputation methods might affect a predic-
tive model’s ability to handle class imbalance. In Section IV-
A we outlined that only 4.59% of the dataset contains
samples from the positive class (experiencing rapid kidney
decline). We can use Autopopulus to easily compare each
imputation method on the downstream PR-AUC versus ROC-
AUC. Though we attempt to deal with class imbalance in the
predictors by weighting samples, we do see the imbalance
severely affecting performance. It is likely the ROC-AUC is
significantly larger than the PR-AUC due to the large number
of samples in the negative class (not experiencing rapid

kidney decline). Overall, we can see that no one imputation
method significantly helped remedy this problem.

Markedly, by comparing methods we identified the im-
putation method with the consistently largest errors, which
turned out to be APnew. This result is to be expected,
as the bins produced by automated MDL discretization on
this dataset were wide. Though this finding might make us
question the utility of APnew, one advantage of APnew is
that unlike all of the previous autoencoder-led imputation
methods, it provides a range of possible values rather than
one or more point estimates for imputation. Arguably, point
estimates produced by the compared autoencoder methods
can be troublesome as they are biased. We can further explore
the usefulness of APnew via the experiments with Au-
topopulus. Despite performing poorly on imputation metrics,
models trained on data imputed with APnew perform quite
similarly to the alternative methods under many predictive
metrics. Table I demonstrates that APnew does a relatively
good job of inferring the correct bin for missing values
under MCAR and MNAR. We believe this indicates that
APnew provides unique insight and can grow into a powerful
addition to Autopopulus as we grow this framework.

1) Future Work: Future work includes repeating analysis
on an updated version of the dataset that covers a longer
follow-up period and is more feature-rich. We also intend
to attempt pre-training on various missingness scenarios to
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train the model to learn those mechanisms, and then fine-
tune the autoencoder imputer model on the dataset or task at
hand. We plan to analyze if the techniques differ in strengths
depending on characteristics of the data, in particular, data
distribution. In order to expand on the novel method, we plan
to analyze how discretization bin sizes affect the behavior
and performance of the imputation method, and how it
compares to other methods. One improvement that could
be made to the proposed method would be to account
for the longitudinal aspect of EHR data by combining the
autoencoder with a long-short term memory model. Other
improvements include trying end-to-end training and includ-
ing more computationally expensive but effective predictor
models such as XGboost or a shallow neural network.

Aside from the motivation for using autoencoders for
imputation (Section I), autoencoders provide another unex-
plored advantage. In the process of learning to impute a
given dataset, autoencoders also learn to encode the data into
latent representations via the encoder. We plan to explore
how using latent representations of the data generated from
an autoencoder optimized to impute a dataset may affect
downstream tasks. We also plan to explore the performance
of downstream predictive models when they are directly
fed these latent representations, specifically whether higher
performance can be achieved than on the imputed data.

VI. CONCLUSIONS

Autopopulus enabled us to more easily investigate differ-
ent autoencoder-based imputation methods for our dataset
and task of interest. Building our system so that it abstracts
away the implementation details of specific variations of
autoencoders resulted in a highly extensible framework,
enabling rapid and wide experimentation with different au-
toencoder flavors. From our experiments we were able to
see that no one imputation method is definitively better
than all others, as the performance of each method varies
across missingness mechanism. As such, it is important to
always evaluate the performance of a range of imputation
methods on one’s dataset, as restricting an analysis to a
single method may lead to sub-optimal results. Our analysis
shows that while autoencoders can be effectively used for
imputation in a clinical setting, given the unique nature
of each feature and missingness pattern, a combination of
imputation methods might be most effective. In addition to
presenting Autopopulus, we also explored a novel autoen-
coder imputation technique that, though it struggled with this
dataset, shows promise in future iterations and extensions to
other datasets. In general, the differences in performance on
the downstream task were rather minuscule for this dataset.
We believe this work will enable and encourage practitioners
to more thoroughly investigate autoencoder-based imputation
and also aid them in selecting the right autoencoder for their
task, much as one would tune any hyperparameter.
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