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Abstract— Sepsis is one of the pathological condition with
the highest incidence in intensive care unit. Sepsis-induced
cardiac and autonomic dysfunction are well known effects
caused by such dysregulated host response to infection, among
others. In this context, we investigate the role of complex
cardiovascular dynamics quantified through sample entropy
indices from the inter-beat interval, systolic and diastolic blood
pressure time series as well as the cross-entropy between
heartbeat and systolic blood pressure in patients with sepsis in
the first hour of intensive care when compared with non-septic
subjects. Results show a significant (p<0.05) reduction in the
probability of being septic for an unitary increase in entropy
for systolic and diastolic time series (odds equal to 0.038
and 0.264, respectively) when adjusting for confoundings. A
significant (p<0.001) odds ratio (0.248) is observed also in
cross-entropy, showing a reduced probability of being septic
for an increase in heartbeat and systolic pressure asynchrony.
The inclusion of such complex feature also determines an
increase in the predictive ability (+0.03) of a logistic regression
model reaching an area under the receiving operating and
precision recall curves both equal to 0.95.

Clinical relevance This study shows how indexes from infor-
mation theory are able to catch a reduction in the complex
cardiovascular dynamic extracted from commonly available
continuous vital signs recording in ICU that are able to
characterize sepsis development showing a general loss of
the interaction between heartbeat and pressure regulation.
Extracted measures also improve the ability of identify sepsis
in the first hour of intensive care.

I. INTRODUCTION

According to the third international consensus definitions
for sepsis and septic shock [1], sepsis is defined as a dysreg-
ulated host response to infection. A sepsis incidence of about
48.9 million of cases was observed in 2017 with an average
mortality of 19.7% and [2]. Sepsis is also considered one
of the major problems in intensive care units (ICU) where
its final stage, called septic shock, reports a mortality of
38.9% among 47% of patients that met the criteria according
to the third definition of sepsis [3], [1]. To this extent, the
recognition of sepsis is of primary importance and it was also
highlighted in the Surviving Sepsis Campaign Guidelines [4]
as well as in [5], [6] which strengthen the need for timely
treatment and initiation of antibiotic therapies as starting
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sepsis management procedures to be performed in the early
hours of sepsis development or recognition.

Sepsis is known to strongly affect cardiovascular func-
tioning, leading to strong impairment of both myocardial
and autonomic functions. Recently, Wang [7] reviewed the
most common causes of sepsis induced cardiovascular dys-
function, describing it as a global dysfunction of the whole
heart which also induces autonomic depression of both
sympathetic and vagal branches of the autonomic control
system. Also an impairment of the link between heart activity
and blood pressure is evidenced. Previous studies identified
a reduction in heart rate variability (HRV) measures induced
by sepsis in adults [8], [9], [10] and particularly in non-linear
measures like the exponent of the detrended fluctuation anal-
ysis and entropy. Such measures indeed provide estimates of
the non-linear interactions between the heart activity and the
underlying mechanisms. However, to our knowledge, only
a few studies expanded this analysis to the blood pressure
time-series (BPTS) [11], [12], [13], which investigated the
association of blood pressure variability (BPV) with illness
severity and the ability of complexity measures from BPTS
in predicting sepsis, vasopressor independence at 24-h and
28-day mortality. Even less investigated is the analysis of
complex interactions between heart activity and blood pres-
sure in septic subjects. The well known key role of the auto-
nomic control system in regulating the cardiovascular activity
resulted indeed to be strongly impaired by sepsis. Therefore,
this study proposes the assessment of both entropy features
derived from pressure signals and cross-entropy measure
between heart activity and blood pressure to characterize and
predict sepsis in the ICU, when compared to other patients
in critical conditions. The role of these additional features
in identifying septic patients is assessed by focusing on
the improvement that their inclusion produced on a
previously developed sepsis identification pipeline [14]
which showed the high performances using simple linear
models among others.

II. METHODS
A. Cohort Selection

The study includes data publicly available on PhysioNet
[15] gathered from the MIMIC-III database [16], which
contains electronic health records (EHR) of patients entering
the ICU at the Beth Israel Deaconess Medical Center in
Boston, MA. A subset of the MIMIC-III database, i.e.
10,282 patients, is also matched with the corresponding
available recordings of vital signs continuously recorded at
the patients’ bedside.



In order to derive a population including both septic and
non-septic patients (also referred to as control in this study),
we first aligned patients according to the admission in the
ICU and we extracted the first 1-hour recordings of each
patient’s stay. According to this procedure, we can mimic
in the most realistic way possible the condition of a patient
that enters the ICU and is put under the surveillance of the
proposed monitoring tool.

ICU data are known to be characterized by the presence
of different sources of noise, consequently, the following
inclusion criteria were applied to select the waveforms with
the highest quality:

• Presence of contemporaneous ECG (I,II,III or ’V’ leads)
and arterial blood pressure recordings (ABP).

• More than 50% of both signals should be available.
• Patients with 18<age<90.
Finally, waveforms were subjected to manual inspection

in order to remove those with more than 50% of additional
noise like signal saturations, electrodes disconnections and
motion. A total of 142 high quality waveforms were ex-
tracted, resulting in 71 septic and 71 control subjects.

Septic subjects were identified according to the third
definition of sepsis [1], by defining septic patients as those
with a prescription of antibiotics and an increase in sequential
organ failure assessment score (SOFA) greater than two
points [17]. We computed SOFA score at the admission,
identifying as septic patient whoever met the defined criteria
between -24 and +24 hours from the admission in ICU.

B. Data Processing and Feature Engineering

Extracted waveforms were preprocessed and annotated in
order to extract fiducial points from both ECG and ABP
waveforms. R peaks were identified from ECG with an
internally developed algorithm and synchronized with the
extracted sistolic, diastolic and onset fiducial points from the
ABP signal. The obtained time-series were then processed
in order to extract the whole set of HRV features A closed-
loop bivariate point process modelling approach was also
applied in order to extract features representing the linear
interactions between the cardiovascular and autonomonic
nerovus systems, according to our previous work [14].

1) Entropy Features: In addition to the previously intro-
duced set of features, we derived and investigated the role
of non-linear features from the extracted pressure and pulse
arrival time series. Specifically, we computed the sample
entropy for both systolic, diastolic and pulse arrival time
time-series according to Richman et al. [18].

Briefly, considering a time series of N points {u(j) :
1 ≤ j ≤ N}, xm(i) = {u(i + k) : 0 ≤ k ≤ m − 1}
are the N-m+1 vectors of m points obtained for {i|1 ≤
i ≤ N − m + 1} whose reciprocal distance is defined as
d[x(i), x(j)] = max{|u(i + k) − u(j + k)| : 0 ≤ k ≤
m − 1}. In this context, the probability that two sequences
will match for m points, Bm(r) can be defined starting from
Bm

i (r) = Bi/(N −m+ 1), with Bi the number of vectors
xm(j) within r of xm(i), where 1 ≤ j ≤ N −m, j 6= i and
consequently, Bm(r) =

∑N−m
i=1 Bm

i (r)/(N−m). Similarly,

the probability that two sequences will match for m+1 points,
Am(r), is derived from Am

i (r) = Ai/(N −m+ 1) with Ai

the number of vectors xm+1(j) within r of xm+1(i), where
1 ≤ j ≤ N −m, j 6= i, thus obtaining Am(r) as Am(r) =∑N−m

i=1 Am
i (r)/(N −m). Richman et al. estimate the sam-

ple entropy as SampEn(m, r,N) = −ln(Am(r)/Bm(r)).
Cross-SampEn was then extracted by simply substituting the
vectors xm(j) and xm+1(j) obtained from the first series
u with vectors ym(j) and ym+1(j) obtained from a second
series {v(j) : 1 ≤ j ≤ N}, ym(i) = {v(i + k) : 0 ≤ k ≤
m− 1}, thus defining the distance between x(i) and y(i) as
d[x(i), y(j)] = max{|u(i+k)−v(j+k)| : 0 ≤ k ≤ m−1}.

Due to the strong effects of sepsis on the coupling between
heart rate and arterial blood pressure, we evaluated the
cross sample entropy between RR interval series and systolic
pressure series (XEn RR-SAP) to assess changes in the non-
linear interaction between these two systems.

C. Statistical Analysis and Classification

Statistical difference between the two groups was assessed,
for each entropy feature and for extracted time indices,
through a generalized linear model correcting for confound-
ings (age, gender, undergoing treatment of vasoactive agent
and sedative, undergoing mechanical ventilation, hyperten-
sion and diabetes).

Finally, the role of entropy features from blood pressure
and pulse arrival time series as well as RR-SAP cross-entropy
in predicting sepsis was tested by adding them to the whole
set of features whose performance was already assessed in
our previous study [14].

III. RESULTS

A. Statistical analysis

Table I shows median and interquartile ranges of the con-
sidered features for both septic and control population. It is
worth mentioning the higher median values of AVSAP, SD-
SAP and SDDAP for septic subjects (133.3mmHg, 9.2mmHg
and 5.59mmHg) with respect to control ones (125.6mmHg,
7.5mmHg, 4.7mmHg) as well as the sensibly lower median
values of the following measures of entropy SAP SampEn
(S: 0.167, C: 0.262) and DAP SampEn (S: 0.281, C: 0.493)
and XEn RR-SAP (S: 0.817, C: 1.048). The comparison of
some generic features describing the patients’ cardiovascular
state and the non-linear features extracted between septic
and control populations is presented in Table II. Average
RR interval (AVNN) and its variability (SDNN) did not show
statistically significant difference, however, average systolic
pressure (AVSAP) and SDSAP show significant (respectively,
p<0.05 and p<0.01) changes with respect to the control
population, with respectively 1.2 and 4.1 times increase in
probability of being septic when an increase of 10 mmHg
is observed. Similarly, diastolic series variability shows a
significant (p<0.05) difference with odds>1 whereas AVDAP
does not. Pulse arrival time linear features AVPAT and its
variability SDPAT result to be significantly (p<0.001 and
p<0.01, respectively) different between septic and control



Feature Distributions
Feature Sepsis Control

AVNN [ms] 702.5 744.1
618.8-804.6 633.4-875.0

SDNN [ms] 35.0 30.9
18.7-61.8 16.9-61.5

AVSAP [mmHg] 133.3 125.6
112.6-144.87 114.17-135.69

SDSAP [mmHg] 9.2 7.5
6.9-13.3 5.7-9.9

AVDAP [mmHg] 70.7 70.9
60.7-81.2 63.0-78.8

SDDAP [mmHg] 5.6 4.7
4.3-7.8 3.7-6.2

AVPAT [s] 0.285 0.273
0.263-0.316 0.235-0.291

SDPAT [s] 0.017 0.012
0.011-0.031 0.008-0.019

RR SampEn 1.062 1.199
0.878-1.514 0.856-1.815

XEn RR-SAP 0.817 1.048
0.516-1.174 0.858-1.678

SAP SampEn 0.167 0.262
0.12-0.279 0.177-0.422

DAP SampEn 0.281 0.493
0.177-0.579 0.283-0.832

PAT SampEn 0.812 0.889
0.708-1.066 0.745-1.096

TABLE I
MEDIAN AND INTERQUARTILE RANGES FOR SEPISIS AND CONTROL.

subjects, with odds respectively equal to 4.1 and 1.6 for
corresponding increases of 0.1 and 0.01 seconds.

Sample entropy measures computed on pressure time
series (SAP SampEn and DAP SampEn) result statistically
significant (p<0.01 and p<0.05) when comparing the two
populations, showing both odds<1 for unitary increase as
well as cross-sample entropy from RR and SAP series
(XEn RR-SAP) which shows odds=0.248 (p<0.001).

In Fig.1 are shown ECG and ABP traces from two distinct
subjects: a septic (upper) and a control (lower) subject
with XEn RR-SS equal to 0.1698 and 7.272, respectively.
The high overall blood pressure variability, please note the
difference in the two scales, and the stronger synchronization
between RR and SAP time series can be appreciated in the
septic traces with respect to the control ones.

B. Identification Model Results

Results obtained in sepsis identification, adding the in-
formation of the pressure related entropy and cross-entropy
measures, showed an increase in discriminating ability when
comparing the two best models. Specifically, we reach an
area under receiving operating curve (AUROC) and an area
under precision recall curve (AUPRC) both equals to 0.95.

IV. DISCUSSIONS

A. Statistical Analysis

Results from statistical investigation indicate that pressure
signals are strongly informative about the presence of sepsis.
Indeed, this study confirms the importance of pressure time
series and pressure variability which show that an increase in

Sepsis-Control
Feature Coefficient pValue Odds (Increase) Sig

AVNN [ms] -0.001 0.4880 0.914 (+100) NS
SDNN [ms] 0.009 0.1562 1.092 (+10) NS

AVSAP [mmHg] 0.02 0.0422 1.221 (+10) *
SDSAP [mmHg] 0.142 0.0066 4.14 (+10) **
AVDAP [mmHg] 0.009 0.5344 1.096 (+10) NS
SDDAP [mmHg] 0.162 0.0364 5.069 (+10) *

AVPAT [s] 14.164 0.0009 4.122 (+0.1) ***
SDPAT [s] 46.673 0.0054 1.595 (+0.01) **

RR SampEn 0.137 0.7094 1.146 (+1) NS
XEn RR-SAP -1.394 0.0006 0.248 (+1) ***
SAP SampEn -3.277 0.0063 0.038 (+1) **
DAP SampEn -1.331 0.0165 0.264 (+1) *
PAT SampEn -1.339 0.0735 0.262 (+1) NS

TABLE II
ESTIMATED COEFFICIENTS, P-VALUES AND ODDS RATIOS FOR EACH OF

THE EXTRACTED FEATURES. SIGNIFICANCE (* P<0.05,** P<0.01,***
P<0.001) IS TESTED THROUGH LOGISTIC REGRESSION MODEL AFTER

CORRECTION FOR CONFOUNDINGS (AGE, GENDER, HYPERTENSION,
DIABETES, SEDATIVE AND VASOPRESSOR ADMINISTRATIONS AND

MECHANICAL VENTILATION.

blood pressure variability is associated with sepsis, similar
results were also found by previous studies [12], [13] that
found the association of higher pressure variability with
illness severity. Septic subjects also show a non significant
higher heart rate (lower AVNN) that is probably linked with
the significantly higher systolic pressure, which motivates
also the significantly higher average pulse arrival time, thus
suggesting a general state of vasodilation, a condition known
to be present in sepsis [19]. The significant differences in
systolic, diastolic and pulse arrival time variabilities also
suggest an impaired autonomic regulation that does not
properly and stably regulate the state of the vessels, this is
inline with recent literature finding [20] showing a reduced
reactive hyperaemia and peak hyperaemic blood flow.

The presented discussions are further motivated by the
entropy features which differently from previous studies
show that RR interval entropy is not significantly influenced
in septic patients than other ill patients in the ICU, whereas
systolic and diastolic entropy are significantly reduced in
sepsis. This possibly indicates a loss of complex non-linear
interactions between the cardiovascular and the autonomic
nervous systems that may be attributed to the hypothesized
impairment in vasculature regulation. This if further empha-
sized by the observed significant loss of cross-entropy in
septic patients between RR and SAP, which points at a higher
synchronization between the two series, thus suggesting that
blood pressure is reflecting more the heart activity with a loss
in the non-linear control of the autonomic nervous system
of blood pressure. It has to be mentioned that, despite the
analysis were adjusted also for the presence of mechanical
ventilation, patients’ respiration, highly influenced by sepsis
[22], might play a key role influencing both RR and SAP,
indeed previous studies already assessed a reduction in cross-
entropy between RR and respiration [18] and this effect
might be reflected on the blood pressure also [21]. Finally,



Fig. 1. Caption

the obtained increase in discriminating ability of the devel-
oped machine learning model strengthens the importance of
features coming from the complex domain both for blood
pressure time-series, their high predictive power was indeed
previously observed in [11], and for describing the complex
interaction between heart and blood pressure as well as their
potential clinical role in intensive care.

V. CONCLUSIONS

The study highlights the importance of monitoring the
complex cardiovascular dynamics in intensive care unit,
demonstrating how differences in these indices provide in-
sights on the underlying pathophysiology of septic patients
when compared with other ICU patients. We also show
the ability of complex indices when also applied to blood
pressure are able to boost up performances of machine
learning models in order to identify sepsis as soon as possible
from the patients’ admission.
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