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2D tissue strain tensor imaging in quasi-static ultrasound elastography∗

Anne-Lise Duroy1, Valérie Detti1, Agnès Coulon2, Olivier Basset1, Elisabeth Brusseau1

Abstract - Accurately estimating all strain components
in quasi-static ultrasound elastography is crucial for
the full analysis of biological media. In this paper, 2D
strain tensor imaging is investigated, using a partial
differential equation (PDE)-based regularization method.
More specifically, this method employs the tissue property
of incompressibility to smooth the displacement fields
and reduce the noise in the strain components. The
performance of the method is assessed with phantoms
and in vivo breast tissues. For all the media examined,
the results showed a significant improvement in both
lateral displacement and strain but also, to a lesser
extent, in the shear strain. Moreover, axial displacement
and strain were only slightly modified by the regular-
ization, as expected. Finally, the easier detectability of
the inclusion/lesion in the final lateral strain images
is associated with higher elastographic contrast-to-noise
ratios (CNRs), with values in the range [0.68 - 9.40] vs
[0.09 - 0.38] before regularization.

I. INTRODUCTION

Over the past few decades, elastography techniques have
been developed for the in vivo investigation of the mechan-
ical properties of soft tissues [1-3]. This study focuses on
quasi-static ultrasound elastography, which produces strain
images of biological media under compression. Commonly,
only the axial strain (along the acoustic beam) is estimated.
However, some authors have shown that other components
of strain could also provide useful information about the
observed tissue. For instance, shear strain gives information
about lesion mobility [4,5]. Various methods can be found
in the literature that compute the different components of
tissue displacement [6-8]. Nonetheless, ultrasound images
are characterized by anisotropic resolution, which leads to
coarser quality of fields for the displacement components
orthogonal to the axial direction. This results in strain images
highly affected by noise. Yet, accurately estimating all strain
components remains crucial for fully analyzing a medium,
not only through a more complete visualization of the
tissue response, but also through implementation of further
computational methods necessary to reconstruct mechanical
parameters such as Young’s modulus [9].
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1Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM Saint-
Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, France
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Different methods have been introduced to improve
displacement estimation, especially of lateral one. Some
developments focus in particular on the data used for
displacement computation. In [4,10], for instance, the
displacement is determined from estimations performed
along multiple insonification angles. In [11], Liebgott
et al. propose the use of specific radiofrequency (RF)
images more adapted to track the tissue lateral displacement
than conventional ones. These RF images include lateral
oscillations, resulting from a particular beamforming. Other
work focuses instead on the estimation method itself to
reduce noise in elastograms, notably with the development
of regularization-based approaches [12-15]. Guo et al. [16]
recently proposed a partial differential equation (PDE)-based
regularization method to smooth the displacement fields
using the (quasi) incompressibility property of soft tissues
[17]. This method has shown promising results, especially
with an important increase in the contrast-to-noise ratio
(CNR) for lateral strain images.

In this paper, we investigate 2D strain tensor imaging
and more particularly the improvement in strain images
produced by complementing our motion-tracking approach
[18] with the PDE-based regularization method [16]. The
overall method we have developed works as follows: 1)
both axial and lateral displacements are estimated with
our motion-tracking technique, 2) the resulting displacement
fields are then regularized, and 3) axial, lateral, and shear
strain images are computed from the gradient of the es-
timated displacements. The performance of the method is
assessed with phantom and in vivo breast data. Numerical
models of the phantom experiments are also provided for
a more thorough analysis of the estimated fields. Finally, a
quantitative assessment of the method is carried out, with the
computation of CNR values.

II. METHOD
A. Estimation of the displacement fields

As previously mentioned, a large variety of approaches
are available to estimate the displacement fields from RF
ultrasound images. The method developed by our group and
used in this study is briefly explained here. We refer the
reader to the following papers for additional information
[18,19].

The basic principle of the method is the following: let
us consider I1 and I2, two RF images acquired during
medium deformation. First, I1 is subdivided into multiple
2D regions of interest (ROIs) of the same dimensions,



regularly positioned and overlapping each other. Then, for
each one of these ROIs, its deformed replica is identified in
I2 via the maximization of the correlation coefficient (CC).
Contrary to most motion-tracking methods, where only a
2D shift is considered, an axial scaling factor α is also
introduced to describe the ROI transformation between I1
and I2. This factor allows us to take into account the shape
variations that occur in the RF signal due to the medium
deformation. Along the lateral direction, however, scaling
is ignored because of the coarser image resolution. Finally,
the axial strain can be directly deduced from the scaling
factor (ε = α− 1) without requiring derivative computation.
Note that the correlation coefficient provides an indication
of the match achieved during parameter estimation, the
closer the value to 1, the better is the match. In case of
insufficient match (CC < 0.75), the estimates are labeled as
untrustworthy and a local regularization is applied to ensure
continuity with spatially close estimates characterized by
CC ≥ 0.75.

Typically in elastography, sequences of RF images are ac-
quired. With our method, parameters are calculated between
consecutive RF images, in order to limit errors due to out-
of-plane motion. Indeed between two successive frames, it
is expected that such motion will be lower than between
the first and the last frames of the sequence. The final
displacement fields and axial strain maps are then obtained
by combining the contribution of all pairs of images. As will
be illustrated in the Results section, this method enables to
accurately estimate the axial displacement field but the lateral
one remains generally too noisy to be used directly for strain
computation.

B. Regularization

The second step consists in regularizing the previously
estimated displacements using the (quasi) incompressibility
property of tissues. Contrary to the regularization described
in step 1, whose application is local, the one here is
performed unconditionally over the whole image. Let d̄ be a
displacement previously estimated in the domain Ω, whose
axial and lateral components are ū and v̄, respectively.
Regularized displacement fields u and v are obtained by
minimizing an objective function F, as follows:

Minimize
u,v

F (u, v), with :

F (u, v) =

∫
Ω

(∇ · d)
2

+ λ1

∫
Ω

(u− ū)2 + λ2

∫
Ω

(v − v̄)2 (1)

where λ1 and λ2 are the weighting coefficients. The first
term of the objective function is the incompressibility
condition, while the other two are the data fidelity terms.
λ1 and λ2, which are both constant and positive, modulate
the regularization weight on the fields.

The problem is solved using a similar approach to the one
described in [16], where F is minimized via the gradient

descent method and the Euler-Lagrange equations. Displace-
ment derivatives are approximated using finite differences
and the Neumann boundary condition at ∂Ω,∇dn = 0, with
n the outward normal at the boundary. λ1 and λ2 are tuned
by visual inspection of the results to improve them in terms
of noise reduction and inclusion/lesion detection. Lastly, the
convergence criterion is chosen as :√ ∑

pixels

((uk − uk−1)2 + (vk − vk−1)2) < ξ (2)

with uk and vk the axial and lateral displacements at iter-
ation k, and ξ = 10−8, considering that the results remain
quasi-unchanged below this threshold. The fields are thus
iteratively updated until the convergence criterion or the
maximum number of iterations (here N = 50, 000) is
reached.

III. RESULTS AND DISCUSSION

An initial assessment of the method was carried out with
breast phantoms, two CIRS models 059 (Computerized
Imaging Reference Systems, Norfolk, VA, USA), and also
with breast tissues in vivo. For each region examined, a
typical quasi-static elastography experiment was performed,
i.e., the medium was cautiously and continuously compressed
and decompressed by the operator using the ultrasound probe
while the RF images were acquired. Data were collected
with an Ultrasonix ultrasound scanner equipped with an
L14-5W/60 transducer. The sampling frequency was 40
MHz. In this paper, three examples of results are presented,
with displacement and strain fields obtained during medium
compression (cases #1 and #3) and decompression (case
#2), for a more complete illustration.

Before detailing the results, a few comments on the choice
of the weighting coefficients need to be made. First, it is
interesting to note that the values of λ1 and λ2 were kept
unchanged in all three cases, i.e., 10 and 0.03, respectively.
This choice was made for λ1 to prevent any loss of quality
in the axial component of the displacement, and for λ2 to
allow for sufficient modifications in the lateral component.
Indeed, large values of λ limit field variations, and with
these weights, the regularization will mostly modify the
lateral fields.

Two phantom results are first presented: one for a region
containing a single inclusion (case #1, Fig. 1a, Fig. 2), and
the other, two inclusions one above the other (case #2, Fig.
1b, Fig. 3). In both cases, the inclusions are approximately

Fig. 1. B-mode images. From left to right: phantom - case #1, phantom -
case #2, and in vivo breast tissues - case #3.



three times stiffer than the background (information provided
by the manufacturer). For these two cases, a numerical
model was built with Comsol Multiphysics R© [20]. The
simulations reproduce the configuration of 3D media
containing inclusion(s) that are deformed using a transducer,
with the applied displacement manually adjusted to obtain
values similar to those measured experimentally. Although
it is not possible to perfectly model the experiment, these
simulations will provide elements to which the experimental
results can be compared, such as the range of lateral strain
values or shear strain patterns. This should help us to assess
and analyze the experimental fields.

Results from case #1 are displayed in Fig. 2, and
case #2 in Fig. 3. Although the second case comprises two
inclusions spatially close, similar results can be observed.
Unlike the axial displacement (a), the lateral one before
regularization (d) is noisy, and cannot provide useful
information about the phantom lateral strains (m). However,
both displacements remain in agreement with the simulations
(c,f). After regularization, the lateral displacement (e) is
smoother compared with (d). This smoothing is sufficient
to significantly enhance the lateral strain (n), resulting in an
image where the inclusions are clearly revealed. Moreover,
the lateral strain field (n) is consistent with its corresponding
simulated field (o), and exhibits the same range of strain
values, which was not the case before. Indeed, before
regularization, the lateral strain (m) is highly affected by
noise, leading to a much wider range of values.

Fig. 2. Phantom results - case #1. From top to bottom: axial displacement,
lateral displacement, axial strain, shear strain, and lateral strain. From left
to right: fields before regularization, after regularization, and simulated. A
8× 2 median filter was used in (j) and (k).

Fig. 3. Phantom results - case #2. From top to bottom: axial displacement,
lateral displacement, axial strain, shear strain, and lateral strain. From left
to right: fields before regularization, after regularization, and simulated. A
8× 2 median filter was used in (j) and (k).

By contrast, the regularization has no visible impact on
the axial displacement (a,b), and thus on the axial strain
(g,h), as expected. In the final axial and lateral strain
images (h,n), the inclusions are easily detectable and it is
worth noting that these inclusions are less deformed than
the surrounding medium, which perfectly reflects a stiffer
area. Concerning the shear strain (k), the improvement is
weaker than for the lateral strain, and compared with the
simulation (l) the field presents some line artefacts along
the lateral direction. These artefacts are mainly induced by
the differentiation of the lateral displacement field along
the axial direction. A 8 × 2 median filter was applied to
this field before shear computation, which reduces but not
completely annihilates them. Nevertheless, (k) shows similar
patterns to (l) and the presence of the inclusions can be
detected. Finally, it is important to highlight that, although
our method is a 2D approach, the regularized strain fields
are consistent with a medium deforming in 3D.

The results obtained with breast tissues are now presented
using archived data from a previous breast elastography
study, which was approved by the local ethics committee
(case #3, Fig. 1c, Fig. 4). Detailed information about this
study can be found in [18]. It should be underlined that data
acquisition was conducted similarly to that described above.
The case selected is one of an invasive ductal carcinoma
(IDC). Once again, the regularization effect on the axial
displacement (a-b) and strain (e-f) remains limited, while
it drastically improves the lateral components (c-d, i-j). In
both axial and lateral regularized strain fields, the abnormal
area is perfectly distinguishable and appears stiffer than



Fig. 4. Breast tissue results with an abnormal area corresponding to an
IDC - case #3. From top to bottom: axial displacement, lateral displacement,
axial strain, shear strain, and lateral strain. Fields obtained before (left) and
after (right) regularization. A 8× 2 median filter was used in (g) and (h).

the surrounding tissues, which is in agreement with the
observations generally made for IDCs in elastography
studies. Further analysis is nonetheless difficult, due to
the high complexity of biological media and the lack of
information regarding the mechanical properties of the
examined tissues, which also prevent any simulations from
being performed.

Finally, the CNR is calculated to provide a more quantita-
tive metric to assess the performance of the proposed method.
The CNR is widely employed in elastography studies as
an indicator of lesion detectability within an image. It is
computed as follows :

CNR =

√
2(s̄i − s̄b)2

σ2
i + σ2

b

(3)

where s̄ and σ denote the mean and the standard deviation
of the strain, respectively, within a region inside the
inclusion (subscript i) and the background (subscript b).
These regions are selected using two circular ROIs of
identical size and positioned at the same depth. For each
inclusion, two CNRs are computed, one by selecting the
background region on the right of the inclusion (Fig. 5a)
and the other one on the left (Fig. 5b). The multiplying
factor (MF) is also calculated as the ratio of CNRs after and
before the regularization. The results are presented in Table I.

We can directly point out that the results support the above
visual observations for both phantoms (case #1 and case
#2) and in vivo breast tissues (case #3). More precisely,
CNRlateral significantly improved with the regularization,

Fig. 5. Illustration of the two configurations for ROI selection with the
axial strain image, case #1 (Fig. 2g).

with values in the range [0.68 - 9.40] vs [0.09 – 0.38]
before regularization. It is also interesting to note that
CNRlateral values after regularization are quite close to
CNRaxial ones, which confirms that the inclusions/lesion
are now as easily detectable in the lateral strain images
as they are in the axial ones. A specific comment can be
made for the bottom inclusion in case #2, which shows
more variations in the results than the other cases. For this
inclusion, the multiplying factor is extremely different, 2.16
and 34.86, depending on where the background region is
selected. This difference is due to the higher heterogeneity
in the strain values for the region selected on the right of
the inclusion. Concerning the axial strain, we showed that
the regularization process has no visible impact on these
fields. For all that, a slight improvement in CNRaxial can
be observed, with a multiplying factor ranging from 1.04 to
1.15.

IV. CONCLUSION

In this paper, 2D strain tensor imaging was investigated
involving the use of a specific regularization method. Results
show the strong contribution of this regularization when
facing complex and noisy data, especially for the lateral dis-
placement and strain fields. Beyond a more complete analysis
of the medium strain, these results are particularly interesting
for mechanical parameter reconstruction. These are, however,
only preliminary results and future work will focus on a more
thorough assessment of the proposed method, but also on
the introduction of modifications to still improve the results,
especially the shear strain.
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