Abstract:
Electrode position affects the brain current flow intensity and distribution induced by transcranial direct current stimulation (tDCS). The dorsolateral pre-frontal corte...Show MoreMetadata
Abstract:
Electrode position affects the brain current flow intensity and distribution induced by transcranial direct current stimulation (tDCS). The dorsolateral pre-frontal cortex (DLPFC) is a common target in neuropsychology and neuropsychiatry applications. A positioning scheme and subsequently a headgear has previously been developed to target the DLPFC automatically - devoid of any scalp ruler or neuronavigation method. This approach minimizes the time cost for pre-treatment measurements without compromising targeting accuracy and induced electric field focality. The goal of this study was to further develop this headgear to facilitate broader adoption while maintaining its core design elements intact. Briefly, we developed the headset to accommodate all adult head sizes (52-62 cm) rather than having multiple sizes, to have increased robustness, enhanced visual aesthetics, and have improved usability.We recruited 8 subjects and tested the accuracy of electrode placement on various head sizes. We also tested usability with the System Usability Scale (SUS) and asked the subjects to rate visual appeal. Our study demonstrated that the newly developed headset had greater usability and was more visually appealing than its predecessor without compromising targeting accuracy.Clinical Relevance— This study introduces a headset for routine tDCS administration targeting bilateral DLPFC. The headset is highly usable, robust, and is expected to facilitate home and high-volume use.
Published in: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Date of Conference: 01-05 November 2021
Date Added to IEEE Xplore: 09 December 2021
ISBN Information:
ISSN Information:
PubMed ID: 34892343