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Abstract— Generalizability between individuals and groups
is often a significant hurdle in model development for hu-
man subjects research. In the domain of wearable-sensor-
controlled exoskeleton devices, the ability to generalize models
across subjects or fine-tune more general models to individual
subjects is key to enabling widespread adoption of these
technologies. Transfer learning techniques applied to machine
learning models afford the ability to apply and investigate the
viability and utility such knowledge-transfer scenarios. This
paper investigates the utility of single- and multi-subject based
parameter transfer on LSTM models trained for “sensor-to-
joint torque” prediction tasks, with regards to task performance
and computational resources required for network training.
We find that parameter transfer between both single- and
multi-subject models provide useful knowledge transfer, with
varying results across specific “source” and “target” subject
pairings. This could be leveraged to lower model training time
or computational cost in compute-constrained environments or,
with further study to understand causal factors of the observed
variance in performance across source and target pairings, to
minimize data collection and model retraining requirements
to select and personalize a generic model for personalized
wearable-sensor-based joint torque prediction technologies.

I. INTRODUCTION

Wearable physiological sensors may support decision-
making, training, and device control across a variety of
clinical, health monitoring, fitness, and wearable robotics
tasks [1], [2], [3], [4]. The ability to generalize physiological
sensing models between individuals is often a significant
hurdle in model development for more widespread adoption
in these domains. Among these use cases, wearable robotics
(e.g. exoskeletons) have stricter requirements for temporal
granularity and specificity of state sensing than other types
of activity monitoring, given the need for real-time detection
of user movement and intent [5]. For this work, we focus
specifically on the requirements for wearable sensing models
for the wearable robotics and other real-time joint dynamics
estimation use cases.
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In this context, the issue of model transferability and
generalizability is encountered on several dimensions: Does
a model developed with data from a single subject in one
data collection session generalize to another sensor place-
ment/data collection session? Can a model from one subject
be applied to another? Can a population-based model be
applied to individuals? What is the minimum amount of
data and computational resources required to train a model
for a single subject? Can a “general model” with minimal
subject-specific fine-tuning be developed? These questions
directly relate to the practicalities of experimentation with
and commercialization of such systems. For example, an
exoskeleton device that could be manufactured and shipped
to consumers with a general model that then requires a
short amount of wearer-specific retraining, with compute
resources available on-board or on an at-home accessible
cloud-based device, enables distribution of such a technology
to large populations. Similar concerns apply to experimenta-
tion during research or product development phases, and to
adoption into clinical usage: minimizing training time allows
for more subjects and different experiments to be run, and
understanding the limitations of such techniques are key.

Transfer learning techniques from machine learning can
be leveraged to transfer knowledge between individual-
and/or group-based models. The rest of this paper outlines a
set of experiments which investigate the viability and utility
of parameter-based transfer learning for neural network-
based regression models mapping sequences of wearable-
sensor-based features to ankle torque values. Section II cov-
ers background information on transfer learning, particularly
as applied to recurrent neural networks and human subject
sensor data, and a literature review of related work. Section
III describes the data collection, model development, and
experiments evaluating the impact of one-to-one and three-
to-one subject based transfer learning on task performance
and network training resources. Sections IV and V present
and discuss the results of those experiments, followed by a
summary of conclusions in Section VI.

II. BACKGROUND

Transfer learning is a machine learning method that uses
a model developed for one task as a starting point for a
second task, often to save training time and/or to achieve
better performance. These methods are frequently employed
in applications where data is limited for the second task (the
“target domain”) but not for the first (the “source domain”).
More generally, transfer learning has often been shown to
reduce the initial model error, train faster, and have a smaller
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final error than training machine learning models de novo
with randomized weights.

Transfer learning has been a great enabler in computer
vision, which is typically focused on leveraging pre-trained
convolutional neural net (CNN) layers for new tasks [6]. The
advantages of performing transfer learning in this domain
include the existence of large, open, and standard datasets
[7], [8], and the standardization of CNN layers as the
initial components of most image-based neural networks. For
sequence-based networks that are often used for time series
data, such as recurrent neural networks (RNN) and long
short-term memory networks (LSTM), the body of work is
more limited. Much of the work here is with natural language
models [9], [10], again, driven by standardized, large datasets
[11]. RNN and LSTM networks are particularly applicable
to the biomechanics domain, since biomechanics is largely
concerned with time series information.

A substantial body of work exists in applying transfer
learning techniques, including cross-subject transfer, to hu-
man activity recognition from wearable sensor data [12].
Specific to kinematics regression tasks, prior work includes
the application of LSTMs to the estimation of skeletal muscle
forces from kinematics data during walking gait cycles, using
weight transfer across multi-subject simulation to improve
model accuracy [13]. Despite some similar work, to the best
of our knowledge, inter-subject transfer for joint dynamics
regression has not been previously investigated, particularly
with the goal of understanding inter-subject differences. Our
work focuses on parameter transfer between networks via
weight initialization. Other approaches exist, but were not
explored in this study; we refer the reader to Pan et al. 2009
for a broader survey of these methods [14].

When applying transfer learning to machine learning mod-
els for a wearable-sensor data driven exoskeleton, we view
the source domain as data from a single subject or population
— for which data can be collected and processed, and models
trained without significant time or computational constraint
— and the target domain as a single human operator. In op-
erational deployment of these models, individualization may
be compute-constrained if the system needs to adapt to a new
user, or if an existing user’s physiological signals change dur-
ing use (e.g. due to fatigue, sweat, etc). In both contexts, the
system might begin with some sensor-to-movement model
and need to adapt using onboard computational resources to
improve (or prevent degradation of) performance. The adapt-
during-use case has a stricter requirement for retraining to be
done onboard, since the changes in user signals are occurring
during use. Alternatively, in cases where the systems are
not compute-constrained, but obtaining ground truth may be
expensive (e.g. utilizing motion capture), it may be desirable
to limit the amount of subject-specific information that is
needed to allow a “calibration” to a new user.

The latter scenario is particularly relevant to situations
such as commercialization of a product, or mass deployment
of a device to personnel, such as warehouse workers or
soldiers. Here, it could be advantageous in terms of time
and cost to leverage transfer learning to specialize a model

to an individual, while starting from a generic model known
to work well for another person, or group of people.

Although models for motion estimation from accelerome-
ter inputs are fairly generalizable between people due to the
dynamical constraints of human motion [15], the same has
historically not been true for electromyography sensors [16].
Surface electromyography (sEMG) senses electrical activity
of human muscles, and the specific characteristics of the
signals can vary significantly depending on the physiology
of the subject (e.g. skin, fat, sweat) as well as on the
sensor placement [16]. sEMG is, however, potentially more
useful than kinematics for some applications where motion
prediction is desirable, such as wearable robotics (since its
signals precede motion), or when a force or moment is
the measure of interest, since sEMG is related to these
even without motion. Apart from motion prediction, the
inclusion of sEMG alongside accelerometry has been shown
to improve the accuracy of human activity recognition [17].
Machine learning on sEMG signals has been demonstrated
for force/torque estimation to some degree in a subject-
independent setting [18] and between experiment sessions
[19], though most work in this domain has focused on single-
session, subject-dependent models.

In an effort to better understand and address the use
of transfer learning for model personalization, this paper
investigates single- and multi-subject based parameter trans-
fer on LSTM models trained for subjects’ sensor-to-joint
torque prediction tasks, with regards to task performance,
and network training requirements in terms of computational
resources and data required.

III. METHODS

In this study, we consider the problem of training neural
network models that map wearable sensor inputs to human
ankle joint moments during various types of locomotion.
Specifically, we probe whether models that are pre-trained
on one or more individuals perform well when 1) faced with
data from a new subject without additional subject-specific
training (zero-shot learning), 2) trained to convergence on
data from a new subject (transfer learning), and 3) trained
only on a small amount of data from the new subject (data-
limited transfer learning).

Previous work showed that for this task, LSTMs are able to
outperform a variety of other networks used in the literature
for similar tasks [20]. We start with that network model
as our basic training setup and test the three previously-
described conditions. This section covers the methods used to
collect the human locomotion data, the training of individual
base models, and the transfer learning experiments that build
on top of the base models.

A. Locomotion Data Collection

Five healthy human subjects completed the data collection
protocol, but only four subjects’ data were usable due to
sensor malfunction on one subject. The remaining four
subjects were comprised of three females and one male,
were 25.0 ± 4.2 years old, with body mass of 72.7 ± 21.6
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Fig. 1. One of the experiment subjects with sEMG/acceleromter sensors
and motion capture markers.

kg (mean and standard deviation). All participants provided
written, informed consent, and the protocol was approved by
the MIT Committee On the Use of Humans as Experimental
Subjects (protocol #1703875483).

The data collection protocol involved self-paced locomo-
tion on an instrumented treadmill, during which subjects
were given commands to stand, walk, run, and sprint, via
on-screen text, which changed every ten seconds. Each
trial lasted 150 seconds, and subjects completed five trials
with varying orders for the commanded speeds, with an
opportunity to rest between trials.

All subjects wore eight Delsys Trigno Avanti sensors
(combined surface electromyography and acceleromters,
Delsys Inc, Natick, MA, USA), four on each leg (vastus me-
dialis, hamstring, tibialis anterior, gastrocnemius medialis),
along with motion capture markers forming a modified Plug-
in Gait model (Vicon Industries Inc., Oxford, UK) focused
on the lower body (Fig. 1). Half-second windows with 0.49
s overlap were used for feature extraction from the surface
electromyography (sEMG) sensors and accelerometers. For
sEMG signals, the max value and area of the rectified signal
were calculated within each window, and for accelerometer
signals, the median vector magnitude and the median angle
in the X-Y, Y-Z, and Z-X planes were calculated for each
window. These features were selected due to their low
computational cost, which makes them suitable for real-time
extraction with a low-power wearable computer.

The prediction labels were ankle torques over time, as
estimated by the Plug-in Gait model using motion capture
and force plate information, which is one of the most
common methods for human gait data reduction [21]. Further
experiment details are described in our previous work [20].

B. Baseline Model Training

All machine learning training and testing was done using
the PyTorch framework. The model architecture used in
all experiments in this study was a single-layer LSTM
with 64 hidden units, followed by two feedforward layers
with 16 hidden units per layer [20]. In that study, this

architecture was found to perform similarly to a model more
than twice the size (also from literature, [2]) for our ankle
torque prediction task. For baseline training, all networks
were trained for ankle torque regression, using an input
sequence of 50 time steps of features, and an output sequence
of 50 time steps of pairs of ankle torques. Any output
sequences that contained values beyond 5σ of the mean
were rejected as outliers and not used. Additionally, since
the subjects spent slightly different amounts of time in each
commanded activity, segments belonging to shorter activities
were oversampled in the training to balance out activity
representation. To facilitate both model training and post-hoc
accuracy comparisons between subjects, the output torques
were normalized from units of N ·m/kg to dimensionless
values between 0 and 1 using min-max normalization.

Mean squared error (MSE) loss was used to measure
model performance, and models were trained until the differ-
ence in training loss between subsequent 3-epoch windows
was below 0.1 ×10−3 (with the exception of 3-subject
baseline models, which were stopped at 0.01 ×10−3). This
will be referred to as an early stopping or convergence
criteria.

As 6 trials of data were collected for each subject, two
variants of a within-subject six-fold cross validation schemes
were employed to evaluate the generalizability of results. In
the “standard” cross-validation scheme, 5 trials were used
for training, and one for testing, while in the “data-limited”
scheme, 1 trial was used for training and 5 for testing. The
latter was tested to probe the utility of transfer learning
techniques for compute- or data-constrained applications.
Model performance on the test dataset was recorded before
training began (“epoch 0”) and after every training epoch.

C. Transfer Learning Experiments

Three weight initialization schemes were considered:
single- (1-to-1) subject transfer, multi- (3-to-1) subject trans-
fer, and a random weight initialization baseline (Fig. 2).

A set of baseline models were trained, using a random
weight initialization scheme whereby network weights are
initialized by drawing from a Gaussian distribution. 24
single-subject models (four subjects, each with 6 cross-
validation folds) and 24 multi-subject models (four 3-pooled-
subject combinations, each with 6 cross-validation folds)
were produced. Baseline models were always trained with the
“standard” cross validation scheme. From this set of baseline
models, one model (the third cross-validation fold) per sub-
ject or multi-subject pool was chosen to be the representative
“source domain” model for all following transfer learning
experiments.

For each subject (whose data can be considered the “tar-
get domain” for transfer learning), 6 multi-subject transfer
learning models were trained (one 3-pooled-subject weight
initialization scheme with 6 cross-validation folds) and 18
single-subject transfer learning models were trained (three
single-subject weight initialization schemes - one per “source
domain” subject - with 6 cross-validation folds). This process
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Fig. 2. Summary of the model training process, for baseline (initialized with random weights) and transfer-learned models (initialized with pre-trained
model weights), in both standard and data-limited training. Six-fold cross validation is utilized, producing 6 models per source and target domain selection.

was repeated using each of the two cross-fold validation
variants.

The model training process is summarized in Figure 2.
This set of models was evaluated to understand the degree
and utility of knowledge transfer between subjects or groups
of subjects, by drawing comparisons in model performance
across baseline, single-, and multi-subject transfer schemes,
as well as across standard and data-limited training schemes.

To evaluate the impact of knowledge-transfer on network
training and model performance, we consider three charac-
teristics: the initial accuracy of a model, both before any
training has taken place (zero-shot learning, “epoch 0”) and
after one pass (“epoch 1”) through the training data; the
number of passes through the training data (epochs) it takes
to complete model training (reaching a predefined training
error “convergence criteria”); and the final model accuracy
on test data. If a particular weight initialization scheme
imparts useful information for a target domain, we expect to
see lower initial model error as well as potentially a lower
number of epochs to converge, or lower final model error,
relative to a random weight initialization scheme (illustrated
in Figure 3). At epoch 0, a model without transfer-learned
parameter initialization is merely a random model, thus this
model performance is not considered beyond noting maximal
error bounds.

Fig. 3. Characteristics of model training and network performance,
expected in the case of parameter transfer learning with utility between
source and target domains.

As previously stated, the accuracy values are based on the

per-subject normalized torques. This normalization allows
comparisons between subjects, since the focus of this work is
on relative accuracy changes due to transfer learning, rather
than specific accuracy values. For context, the same model
architecture and data used here with Subjects 1-3 resulted in
MSE values of 0.0053±0.0037 (N ·m/kg)2 (0.073±0.061
N ·m/kg RMSE) [20].

IV. RESULTS

Boxplots for each of the aforementioned metrics for
single- and multi- subject transfer weight initialization
schemes, as well as a random weight initialization baseline
are shown in Figures 4 to 6. Each boxplot comprises six data
points: one per cross validation fold.

For both the standard and data-limited contexts, MSE at
epoch 0 varies for each model and is substantially higher than
MSE at epoch of convergence, indicating that target-subject-
specific retraining provides a substantial improvement in
model performance over zero-shot transfer.

For both single- and multi-subject transfer models in the
standard cross-validation context (Fig. 4), MSE at epoch
1 is substantially lower than that of the baseline random
weight initialized model. The differences in MSE between
transfer learning and random weight initialized models after
one training epoch was 0.022 on average for both single-
and multi-subject transfer (same to this number of significant
figures). This trend is not consistent in the data-limited
context (Fig. 5). No clear trend in MSE at epoch 1 emerges
across all single- or multi-subject initialization schemes.

Model performance at the epoch of convergence is similar
across all target domain subjects and weight initialization
schemes for the standard cross-validation results (difference
of 0.0016 normalized units between single-subject transfer
models and baseline; 0.0023 normalized units for multi-
subject transfer models). This similarity indicates that that
parameter transfer followed by target-subject-specific retrain-
ing generally neither harms nor helps final model accuracy.
However, for models trained in the data-limited context,
random or multi-subject weight initialization have lower
errors at the epoch of convergence relative their single-
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subject weight initialized counterparts, across all target do-
main subjects.

The number of epochs required to reach convergence was
lower with transfer learning in most, but not all, cases of both
the 5-trial and 1-trial training (Fig. 6). Notably, when Subject
4 was the target, random initialization did not take longer
than pre-trained parameter transfer to reach convergence in
many cases for both 5-trial and 1-trial training. Subject 1
also did not show substantial differences in convergence
time between random and pre-trained initialization. Single-
subject-based parameter transfer reduced training time by
five epochs on average, while multi-subject transfer took an
average of six fewer epochs to converge.

Tables 1 and 2 further summarize the mean and standard
deviation of MSE (Table 1) and epochs to convergence
(Table 2) over cross validation folds for each combination
of initialization scheme and source/target domain.

TABLE I
MSE FOR 5-TRIAL TRAINING (AT CONVERGENCE)

Source Domain Target Domain
Initialization Subj 1 Subj 2 Subj 3 Subj 4

Subj 1 3.3 ± 0.8 5.0 ± 0.7 3.6 ± 1.4
Subj 2 7.2 ± 8.1 5.4 ± 0.5 3.8 ± 0.5
Subj 3 14.1 ± 24.1 3.0 ± 0.2 3.8 ± 0.7
Subj 4 11.5 ± 18.3 3.8 ± 0.6 6.0 ± 1.2
3-to-1 9.2 ± 11.9 3.6 ± 0.9 4.6 ± 0.8 3.1 ± 0.7

Random 16.0 ± 20.3 3.7 ± 0.2 5.9 ± 1.5 4.4 ± 1.4

Mean & standard deviation over cross-validation folds. All values are MSE
×10−3.

TABLE II
EPOCHS TO CONVERGENCE FOR 5-TRIAL TRAINING

Source Domain Target Domain
Initialization Subj 1 Subj 2 Subj 3 Subj 4

Subj 1 17.0 ± 5.8 12.0 ± 9.7 13.2 ± 5.3
Subj 2 11.7 ± 3.3 14.2 ± 5.0 13.7 ± 4.5
Subj 3 12.7 ± 4.6 18.3 ± 5.3 17.0 ± 6.2
Subj 4 14.7 ± 3.9 14.7 ± 4.8 16.7 ± 4.8
3-to-1 16.7 ± 6.9 12.0 ± 2.8 12.0 ± 3.9 13.7 ± 5.0

Random 17 ± 7.5 20.7 ± 4.3 25.0 ± 9.7 16.0 ± 4.2

Mean & standard deviation over cross validation folds.

V. DISCUSSION

A. Transfer-Learned Model Accuracy and Training

The differences in MSE between transfer learning and
baseline after one training epoch indicates that there is useful
knowledge transfer from models developed for different
subjects: prior information learned from mapping wearable
sensor features to joint torque values from one subject has
utility for that same task but a different subject.

The accuracy of single-subject models applied to target
data without retraining (the zero-shot learning application)
shows variability based on the source subject. For example,
a model trained on subject 4 (source) has a substantially
lower test error than either subject 1 or 3 (source) when
applied to data from subject 2 (target). The model built for

subject 1 has a significantly lower error than that of the other
subjects when applied to subject 3. There may be a variety
of contributing factors to inter-subject differences, ranging
from physiological differences (particularly for the sEMG
sensors, as previously described), to differing gait strategies
[22] and muscle synergies for movement [23]. Understanding
potential causes would require additional research and a
larger data set, which may allow such differences to be
seen. Such a capability could be useful in a clinical setting
where the best model for a patient needs to be chosen
from a set of pre-existing models with known or defined
predictors to aid with model selection. A larger dataset may
also reveal phenotype groups and allow for a library of
multiple “generic” models from which to choose as a source
domain when applied to a new individual.

Table II and Figure 6 indicate that parameter transfer
learning reduces training time in most cases, without sacri-
ficing the accuracy of the final trained models. The time and
computational resource savings here would be most impact-
ful in low-compute environments (e.g. retraining onboard a
wearable computer) or mass deployment applications.

B. Implications for Personalized Physiological Sensing

The ability to perform accurate physiological state sensing
using wearable sensors is a key capability for use cases
including fitness trackers for the general population, monitor-
ing patient progress in a healthcare setting, and controls for
wearable robotics. The level of sensing and state estimation
we present here would typically require a significant amount
of time to both collect subject-specific data, and develop
accurate models. Additionally, EMG-based state estimation
has historically been difficult to translate between sensor
placements, much less between people, without the use of
individualized machine learning models [24], [4]. Although
previous work has evaluated the zero-shot learning case
for wearable sensors both across participants and between
sessions, transfer learning remains underexplored in this
domain [18], [19]. Thus, our results show the potential
for using transfer learning as a technique to reduce both
the computational and data-collection costs of personalizing
sensing models, and hint at the possibility of more general-
ized models that work well with new users.

C. Limitations

One of the limitations of this experiment is the small size
of the subject pool. Further experiments to show model trans-
ferability could be done with a larger dataset, particularly
in the context of developing “general” models based on a
variety of individuals, in a similar vein as our 3-to-1 transfer
learning experiments.

Secondly, our experiments use a single neural network
architecture, with a pre-chosen set of input features [20]. The
kind of weight initialization used here is thus different from
some other commonly-used techniques in the field, where
pre-training is focused on feature extraction layers, as is
common in transfer learning for computer vision [6].
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Fig. 4. One-to-one and three-to-one subject parameter transfer, standard cross-validation scheme: Test data MSE, evaluated at training epochs 0 (zero-shot
learning model accuracy), 1 (initial model accuracy), and convergence (final model accuracy). Test errors for epoch 0 and random weight initialization are
not shown; mean errors are ≈ 2.0 for those cases. Random source refers to random weight initialization.

Fig. 5. One-to-one and three-to-one subject parameter transfer, data-limited cross-validation scheme: Test data MSE, evaluated at training epochs 0 (zero-
shot learning model accuracy), 1 (initial model accuracy), and convergence (final model accuracy). Test errors for epoch 0 and random weight initialization
are not show; mean errors are ≈ 2.0 for those cases. Random source refers to random weight initialization.

Fig. 6. Convergence time (epochs) for one-to-one and three-to-one subject parameter transfer learning.

VI. FUTURE WORK

Broad categories for potential future work include explor-
ing model generalizability, using alternative neural architec-
tures, and transfer learning techniques focusing on feature
extraction.

For greater model generalizability, a larger subject pool
would be desirable. Given the general trends of data usage
in deep neural networks, it is possible that a model trained
on a sufficiently large dataset may have superior zero-
shot performance than our 3-subject pooled models. On the
other hand, specific phenotypes of groups of individuals

with similar physiological signals may also emerge with
a sufficiently large subject pool. Future work may explore
whether learned models are able to disambiguate between
such phenotypes when faced with a new subject simply
through the normal training process, or if such information
needs to be explicitly encoded through feature engineering
or clustering techniques.

For alternative neural architectures, the use of models that
attempt to learn the forms of mechanistic models for physical
systems (“scientific machine learning” [25]), are an attractive
avenue of exploration. These models allow for a blend of the
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universal approximation properties of neural networks and
physical system constraints. For human motion, constraints
exist in dynamical models of limbs, and the limits of human
motion. Given the dynamical nature of wearable sensor in-
puts and human state outputs, these approaches may present a
way to decrease training time, improve model interpretability,
and increase robustness to variations between individuals.
An exploration of inter-subject variability and transferablility
here may be a useful avenue for future research.

Finally, we picked handcrafted input features in this work,
but a type of transfer learning not performed here focuses
on feature extraction, and is a common approach in general
machine learning. Under this framework, instead of allowing
an entire pre-trained network to be retrained (as we do here),
early network layers, which are primarily responsible for
feature extraction, are frozen, while later layers are further
tuned [6]. This technique might remove the need to choose
handcrafted features. Although common networks for general
time-series feature extraction do not really exist as they
do for image recognition, there does exist some work that
uses CNNs to do feature extraction for physiological input
data similar to ours, so assessing the transferability of such
models is a reasonable next step [18], [19].

VII. CONCLUSIONS
This paper demonstrates the utility of single- and multi-

subject-based parameter transfer on LSTM models trained
for “sensor-to-joint torque” prediction tasks during locomo-
tion, with regards to task performance and computational
resources required for network training. The results illustrate
useful knowledge transfer from both paradigms, with varying
results across specific “source” and “target” subject pair-
ings. Comparable accuracy of full trained models, relative
to baseline models without transfer learning, achieved in
fewer training epochs show that such techniques can be
leveraged to lower model training time or computational
cost in compute-constrained environments. Target-subject-
specific training beyond the zero-shot application substan-
tially reduced model error, which suggests transfer learning
techniques could be used to minimize data collection and
model retraining requirements.
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