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Abstract—  Measuring  electrical  potentials  in  the
extracellular space of the brain is a popular technique  because
it can detect action potentials from putative individual neurons.
Electrophysiology  is  undergoing  a  transformation  where  the
number  of  recording channels,  and thus  number  of  neurons
detected, is growing at a dramatic rate. This rapid scaling is
paving  the  way  for  both  new  discoveries  and  commercial
applications;  however,  as  the  number  of  channels  increases
there will be an increasing need to make these systems more
power efficient. One area ripe for optimization are the signal
acquisition  specifications  needed  to  detect  and  sort  action
potentials (i.e., “spikes”) to putative single neuron sources. In
this  work,  we  take  existing  recordings  collected  using  Intan
hardware  and  modify  them  in  a  way  that  corresponds  to
reduced  recording  performance.  The  accuracy  of  these
degraded  recordings  to  spike  sort  using  MountainSort4  is
evaluated by comparing against  expert  labels.  We show that
despite reducing signal specifications by a factor of 2 or more,
spike  sorting  accuracy  does  not  change  substantially.
Specifically, reducing both sample rate and bit depth from 30
kHz and 16 bits to 12 kHz and 12 bits resulted in a 3% drop in
spike sorting accuracy. Our results suggest that current neural
acquisition  systems  are  over-specified.  These  results  may
inform the design of next generation neural acquisition systems
enabling higher channel count systems.

I. INTRODUCTION

Detecting  neuronal  action  potentials  with
electrophysiological techniques is a common method used in
basic  and  applied  neuroscience.  While  this  technique  has
existed for decades, the ability to record from thousands of
neurons  with  single  cell  resolution has  only  been  recently
possible  [1]–[3].  This  has  been  enabled  by  technological
advances  in  neuroengineering,  such  as  Neuropixels,  which
have resulted  in  systems that  have  an  order  of  magnitude
more sensors  and channels  than previous technologies  [4],
[5].  Despite such recent  advances,  systems today still  only
sample a very small fraction of neurons in the brain. There is
a strong need to accelerate the capability of systems to be
able to measure from more neurons.

*Research  supported  by  NIH  Grant  (UF1NS107667-01),  the  Howard
Huges Medical Institute (HHMI), and by previous breakthroughs obtained
through the  Laboratory Directed Research and Development Program of
Lawrence Berkeley National Laboratory under U.S. Department of Energy
Contract No. DE-AC02-05CH11231.

J.H.  is  with  Biological  Systems and  Engineering  Division,  Lawrence
Berkeley National Laboratory (LBNL) and Redwood Center for Theoretical
Neuroscience (RCTN), University of California, Berkeley (UCB), Berkeley
CA 94720 (jhermiz@lbl.gov)

E.J.  was  with  Engineering  Division,  LBNL  and  is  now  studying  at
Syracuse University, Syracuse, NY 13244

As hardware developers look to scale channel counts, they
face challenges to keep integrated circuits compact and under
biocompatible  power  budgets.  Current  popular  neural
acquisition systems typically sample around 30 kHz at 16 bits
resulting in a signal resolution or least significant bit (LSB)
of < 1μV (Table 1) [6]. However, it is unclear whether theseV (Table 1) [6]. However, it is unclear whether these
signal  specifications are  needed for  accurate  spike sorting.
These  challenges  are  leading  engineers  and  scientists  to
question  conventional  wisdom  and  reconsider  hardware
specifications.

Defining the appropriate hardware specifications depends
on  the  design  requirements.  For  basic  neuroscience
applications,  a  key  requirement  for  recording  extracellular
potentials is to detect action potentials and to assign them to
the  putative  individual  neurons  that  generated  them.
Procedures,  collectively known as spike sorting algorithms,
are  used  to  assign  or  “sort”  action  potentials  to  unique
neurons. Spike sorting involves extracting features from the
action potential  (i.e.,  spike)  waveform and clustering these
features.  The clusters  then  correspond to the  collection  of
spikes generated by a neuron. Assigning action potentials to
neurons  with  high  confidence  and  accuracy  imposes  a
constraint on the measured signals. 

TABLE 1

Popular neural acquisition systems and their signal recording specifications. 

System Sample 
rate 
(kHz)

Bit 
depth

Signal 
resolution
(μV)

Channel # Size (mm)

TDT PZ5M 
(PZA)

50 ≥ 16 ~1 128 NA (rack 
mounted)

Intan 
RHD2164

30 16 0.195 64 7.3 x 4.2 
(die)

Blackrock 
Cereplex M

30 16 0.250 128 28 x 34 x 11
(headstage)

Neuropixels
1.0

30 10 ≤ 1.53 384 7.3 x 4.8 
(die)
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Signal  specifications  impact  spike  sorting  results,  but
little work has been done to systematically determine how. In
the one study we identified in this area, Navajas et al used a
synthetic dataset and real  recordings with the spike sorting
algorithm Wave Clus to find minimum signal specifications
necessary for online spike sorting [7]. They performed single
variable parameter sweeps of sample rate and bit-depth with
synthetic data and found the “knee” in spike sorting accuracy
curve occurs at 7 kHz and 10 bits.  They then validated these
results by using real data and reducing both sample rate and
bit depth to 7 kHz and 10 bits (from 28 kHz and 16 bits).
This resulted in 80% spike sorting accuracy relative to the
original  un-degraded  results.  However  this  study  did  not
explore the accuracy of the new generation of offline sorters
that  have  been  developed  recently,  did  not  explore  the
interactions of jointly reducing multiple signal specifications
and  focused  their  analyses  on  a  synthetic  dataset,  so
extrapolating from these results is difficult. Thus, systematic
analyses  that  utilize  recent  advances  in  spike  sorting
algorithms  are  needed  to  identify  optimal  signal
specifications for spike sorting.

In  this  study,  we  performed  a  systematic  analysis  of
signal specifications of real recording using MountainSort4, a
recent  high-performance  spike  sorting  algorithm  [8].  We
explore the effect of sample rate, signal resolution, amplifier
nonlinearity, and signal range on spike sorting accuracy. We
find that signal specifications can be reduced by a factor of 2
or more with almost no change in spike sorting accuracy.

II.  METHODS

The data analysis pipeline used in this work is shown at a
high level in the schematic in Figure 1. The pipeline takes in
a neural recording, which in this case was the Manual Frank
Lab dataset [8].  The Manual Frank Lab dataset  is publicly
available  on  SpikeForest,  a  platform  that  includes  several
standardized  datasets  for  spike  sorting  [9].  This  dataset
consists  of  4-channel  tetrode  recording  in  the  rat
hippocampus. The SpikeGadgets recording system was used
(San Francisco, CA), which utilized the Intan RHD2164 chip
(Los Angeles, CA). The recordings were collected at 30kHz
sample rate and have an ADC resolution of 16 bits resulting
in an LSB of 0.195 μV (Table 1) [6]. However, it is unclear whether theseV. Additional specifications are listed in
Table  1 and a  comprehensive  list  of  specifications  can  be
found  in  the  RHD2000  series  datasheet  on  intantech.com.
This dataset includes four 10 minute epochs with three sets of
human labels  for  each  epoch.  This  yields  12  epoch,  label
combinations, each of which was passed through the pipeline.

The first stage of the pipeline is to degrade or modify the
neural  recording  in  a  way  that  corresponds  to  reduced

recording performance (Figure 2). Specifically, we change
sample rate,  bit depth, amplifier linearity and signal range.
Sample  rate  is  lowered  by  resampling  using  the  Fourier
method, which involves removing and zero padding points in
the  frequency  domain.  The  SciPy  function
scipy.signal.resample was  the  underlying
implementation  used  for  resampling  time  series  [10].  Bit
depth (D) was lowered by rounding to the nearest allowable
level as defined in Equation 1. It is important to note that bit
depth  is  related  to  signal  resolution  (LSB),  signal  range
(Vmax)  and  gain  (G)  through  Equation  2.  Amplifier
nonlinearity or  integral  non-linearity (INL) was applied by
using  Equation  3.  Finally,  reducing  signal  range  simply
involved capping the maximum and minimum signal values.

, 1

 ,  

2

3

Figure 2. Degrading neural recording. Neural recordings were acquired 
using the Intan RHD2164 sampled at 30kHz and with 16 bit resolution. 
This 50 ms time window shows 3 putative extracellular action potentials 
measured by tetrodes in the rat hippocampus. A) The signal is resampled 
from 30kHz to 20kHz, 16kHz, 12kHz, 8kHz and 4kHz. B)  The signal bit 
depth is re-quantized from 16 bit down to 14, 12, 10, and 8 bits using 
Equation 1. C) The quadratic in Equation 3 is applied to the signal to 
model amplifier integral non-linearity (INL) of 20, 40 and 80%.

Figure 1. Degrade analysis pipeline. Raw time series collected from Intan 
RHD2164 were degraded, spike sorted using MountainSort4 and compared 
against spike labels from human experts. Comparison was performed by 
matching each ground truth cluster with a MountainSort4 cluster and 
subsequently computing the weighted average accuracy across all clusters 
as described by Equation 4 and 5. This pipeline was built using the 
SpikeInterface package.

5915

Authorized licensed use limited to: Lawrence Berkeley National Laboratory. Downloaded on January 04,2022 at 17:46:39 UTC from IEEE Xplore.  Restrictions apply. 



The second stage  of  the  pipeline  is  spike  sorting  with
MountainSort4  [8].  The  goal  of  spike  sorting  is  to  detect
action  potentials,  commonly  referred  to  as  spikes,  and  to
cluster (or “sort”) similar spikes together. These clusters (or
“units”) represent putative individual neurons that generated
the spikes. MountainSort4 was chosen because it  performs
well  relative  to  other  algorithms  as  demonstrated  by
SpikeForest,  which  benchmarks  spike  sorting  algorithms
against  ground  truth  datasets  [9].  The  MountainSort4
algorithm is described in detail in [8] and is briefly described
below.  As  with  many spike  sorting  algorithms,  the neural
time series are bandpass filtered from 300 to 6000 Hz and
then  spatially  whitened.  A  threshold  is  applied  to  detect
spikes  and  a  small  window  of  50  samples  around  the
threshold crossing is stored. Principal components analysis is
performed on the spike snippets to extract low, n-dimensional
(typically n=10) representations of the spikes. Finally, the n-
dimensional  points  are  clustered  using  a  non-parametric
approach called ISO-CUT, a key MountainSort4 innovation.
MountainSort4  aims  to  be  an  automated  spike  sorter
requiring less intervention than other sorters. For this work,
no manual curation was performed on the MountainSort4’s
sorted spikes to avoid biasing results.

The third stage of the pipeline compares the spike sorting
results with ground truth labels, which in this case are expert
labels. Spike sorting comparison involves two steps: mapping
between  two sets  of  clusters  and  calculating  the  accuracy
against  the  ground  truth  clusters.  Cluster  mapping  is
performed using the Hungarian method, which finds the best
pairing  for  all  the  ground  truth  clusters  [11],  [12].  The
accuracy (ai) of each cluster is calculated using Equation 4.
The average accuracy of all clusters weighted by the number
of spikes  (ni)  in  each  ground truth cluster  is  calculated  as
defined in Equation 5.

4

 , 

5

This data analysis pipeline was built using SpikeInterface,
a  package  that  wraps  spike  sorting  algorithms  using  a
common framework  [11].  Specifically,  SpikeInterface  was
used  to  perform  preprocessing,  call  MountainSort4  and
compare spike sorting results. Custom software was written
for  the  first  “degrade”  stage  except  for  resampling.  All
software was written in Python 3.8.

III. RESULTS

The neural recordings from the Manual Frank Lab dataset
were  degraded  as  described  above  and  spike  sorted  using
MountainSort4.  The  output  from  MountainSort4  was
compared against ground truth expert labels and the weighted
average  accuracy  from  all  ground  truth  clusters  was
computed. This procedure was repeated for the 12 recording-
label  combinations in  the dataset.  The results  from the 12
recordings were  aggregated  by taking another  average  and

calculating  95%  confidence  intervals  (CI).  The  average
accuracy and 95% CI (error bars) are plotted in Figure 3 as a
function of signal specifications.

Single parameter  sweeps  of  sample rate,  bit  depth and
non-linear  gain are  shown in Figure 3A-C respectively.  In
these  sweeps,  the  indicated  parameter  is  swept,  while  all
other  parameters  are kept constant  at  their  original  values.
The best spike sorting accuracy is ~0.7 and is achieved by the
original neural recordings. As sample rate is reduced, there is
a reduction in accuracy of < 0.05 down to 12 kHz. At 8 kHz
accuracy  falls  to ~0.6 and at  4  kHz,  there  is  a large drop
down to 0.34. When bit depth is reduced from 16 bits down
to 10 bits, similar accuracy is achieved. At 9 bits and 8 bits,
accuracy falls  to 0.65 and 0.56, respectively.  For the non-
linear gain sweep, no change is observed. 

Multivariate parameter sweeps were performed to explore
potential  interactions  among  parameters.  In  Figure  3D,  a
heatmap of accuracy vs. sample rate and bit-depth is shown.
When jointly reducing sample rate and bit-depth a trade-off
between them is evident from the diagonal structure in the
heatmap.  This  can  also  be  seen  by  the  black  lines  which
represent the 0.65 accuracy boundary of the heatmap. This
boundary cuts across the heatmap diagonally. The lower right
portion of the heatmap shows that when both sample rate and
bit-depth are  both greatly  reduced,  there  is  a  compounded
reduction in accuracy. One dramatic case is when sample rate
and bit  depth  are  reduced  to  4  kHz and 8 bits.  Reducing
either sample rate to 4 kHz or bit depth to 8 bits results in
0.34 and 0.56 accuracy, respectively; however, reducing both
results in nearly 0 accuracy.

Another  case  where  there  is  an  interaction  between
parameters  is  between  non-linear  gain  and  bit  depth.
Changing  non-linear  gain  while  all  other  variables  remain
fixed at their original value does not change accuracy, but it
does impact signals of low bit-depth. Interestingly, applying
the non-linearity causes accuracy to increase for 8 bit signals
jumping from 0.56 (no non-linearity) to up to 0.68 as shown
in Figure 3E. In this case, sample rate is fixed to 30 kHz, but
similar  results  were  observed  for  lower  sample  rate  (not
shown). Finally, an interaction between signal range and bit
depth was observed. Reducing signal range by a factor of 4
for 8 bit signals causes accuracy to return to ~0.7 (Figure 3F).
Of  course  this  is  due  to  a  commensurate  improvement  in
signal resolution and indicates that measurements beyond +/-
8192, which corresponds to +/- 1.25mV do not impact spike
sorting accuracy in this case.

IV. DISCUSSION

We  found  that  spike  sorting  4-channel  hippocampal
tetrode recording  using MountainSort4 and Intan hardware
yielded similar results when reducing the sampling rate by
2.5x (to 12 kHz) and signal resolution by 16x (to 12 bits).
Furthermore,  spike  sorting  accuracy  was  unchanged  when
simulating amplifier non-linearity (INL). In fact, introducing
the  non-linearity  improved  spike  sorting  accuracy  for  low
resolution, 8 bit signals. Lastly, reducing signal or dynamic
range by 4x did not deteriorate the spike sorting accuracy, but
rather improved accuracy for 8 bit signals due to increased
signal resolution.
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These results suggest that many neural acquisition
systems are over-specified. Relaxing recording specifications
has  several  advantages  including  enabling  higher  channel
count  systems,  reducing  power  consumption,  and  reducing
the  footprint  of  integrated  circuits.  One  surprising  benefit
suggested by this work is that allowing amplifiers to be non-
linear may result in enhanced spike sorting accuracy for low
resolution signals. This work suggests trading off recording
performance for higher channel count, power efficient, and
compact  systems are  well  worth it  due to  the  diminishing
returns of high performance acquisition systems. 

While these results are encouraging for reducing signal
acquisition  specifications,  it  will  be  important  to  evaluate
spike sorting accuracy  across  additional  datasets  and other
spike  sorting  algorithms.  Specifically,  determining  if  these
results  generalize  across  larger  channel  count  datasets,
different  SNR,  and  diverse  neuronal  populations.  For
example, datasets with large amplitude fluctuations (e.g., due
to movement artifacts) may require a larger signal range and
bit depth for accurate spike sorting. Thus, evaluating noisier
datasets may yield more stringent specifications. Lastly, since
human annotations of spike sorting results is  common, we
used expert labels as ground truth. However, this assumption
may not be ideal due to human biases. Important future work
will  be  to  analyze  multimodal  datasets  and  realistic
simulations with more objective labels.

It is important to note that many spike sorting algorithms
like MountainSort4 depend on the signal to noise ratio. It is
possible that algorithms that are designed for noisier signals
will result in better results at lower sampling rates and signal
resolution.  To this  end,  it  is  instructive  to  consider  signal

processing theory to estimate lower bounds on signal
specifications. In the case of sampling rate, the well known
Nyquist-Shannon theorem states that a signal is completely
determined if it is sampled at twice the rate of the signal’s
highest  frequency  component,  which  is  also  known  at
Nyquist rate [13]. In practice, low pass filters are not perfect
“blocks'', and so this theorem is always violated. However the
reconstruction error is deemed negligible for sufficiently high
sampling rates. Therefore, the sampling rate is usually chosen
to be greater than twice the low pass filter cutoff. In the case
of spikes, the bulk power in the frequency spectrum is from
0.3 to 3 kHz and low pass filter cutoffs typically used for
these  signals  range  from 3  kHz  to  6  kHz  [8],  [14],  [15].
Therefore it is not surprising that we were able to resample
from 30  kHz  down  to  12  kHz  and  achieve  similar  spike
sorting accuracy. It may be possible to sample lower than the
Nyquist rate when leveraging additional knowledge about the
signal. For example, compressed sensing algorithms exploit
signal  sparsity  to  sample  lower  than  the  Nyquist  rate.
Interestingly,  recent  spike  sorting  algorithms  have  used
neural networks to achieve high accuracy [16], [17]. Novel
spike sorting algorithms that exploit neural  signal structure
and leverage advances in machine learning may lead to less
stringent  signal  specifications  and  thus  more  efficient
hardware.

In  related  work,  researchers  have  asked  whether  spike
sorting  is  necessary  for  certain  applications.  Researchers
compared the performance of unsorted spikes or spike band
power with sorted spikes in brain computer interfaces (BCI)
and to estimate neural population dynamics [14], [18]–[20].
They found that unsorted spikes or spike band power yields
comparable and in some cases superior performance relative

Figure 3.Spike sorting accuracy of degraded signals. Accuracy values across the 12 datasets are averaged together and reported. Single variable sweeps of A)
sample rate, B) bit-depth and C) non-linear gain vs average accuracy are shown. For panels A-C, all other parameters are held constant at their most ideal 
value (eg. 30 kHz, 16 bits, 0% non-linearity). D) Heatmap of average accuracy across all combinations of tested sample rate (x-axis) and bit depth (y-axis). 
The average accuracy is displayed as text in each cell. The black trace separates the heatmap based on accuracy values 0.65 and < 0.65. E) Average accuracy
vs non-linear gain grouped by bit-depth. Sample rate is fixed to 30 kHz. Darker bars indicate lower nonlinear gain. F) Average accuracy vs signal range 
grouped by bit-depth. Here, the sample rate is 15 kHz. Darker bars indicate lower signal range. All error bars represent 95% CI.
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to  spike  sorting.  This  body  of  work  suggests  that  spike
sorting  may not  be  needed  for  BCIs  or  to  answer  certain
neuroscience  questions;  however,  many  neuroscience
questions  require  single  cell  resolution.  Therefore,  spike
sorting  will  continue  to  play  a  key  role  in  answering
fundamental neuroscience questions.

V. CONCLUSION

Spike  sorting  with  MountainSort4  was  robust  to  signal
degradation  such  as  resampling  to  lower  frequencies  and
lower  signal  resolution  by  a  factor  of  2  or  more.  These
results  suggest  that  many  neural  acquisitions  are  over-
specified.  This  work  may  inform  the  design  of  next
generation  neural  acquisition  systems  with  lower  power
constraints.
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