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Abstract— Cone-Beam Computed Tomography (CBCT)
imaging modality is used to acquire 3D volumetric image
of the human body. CBCT plays a vital role in diagnosing
dental diseases, especially cyst or tumour-like lesions.
Current computer-aided detection and diagnostic systems
have demonstrated diagnostic value in a range of diseases,
however, the capability of such a deep learning method on
transmissive lesions has not been investigated. In this study, we
propose an automatic method for the detection of transmissive
lesions of jawbones using CBCT images. We integrated a
pre-trained DenseNet with pathological information to reduce
the intra-class variation within a patient’s images in the
3D volume (stack) that may affect the performance of the
model. Our proposed method separates each CBCT stacks
into seven intervals based on their disease manifestation. To
evaluate the performance of our method, we created a new
dataset containing 353 patients’ CBCT data. A patient-wise
image division strategy was employed to split the training
and test sets. The overall lesion detection accuracy of 80.49%
was achieved, outperforming the baseline DenseNet result of
77.18%. The result demonstrates the feasibility of our method
for detecting transmissive lesions in CBCT images.

Clinical relevance — The proposed strategy aims at providing
automatic detection of the transmissive lesions of jawbones with
the use of CBCT images that can reduce the workload of clinical
radiologists, improve their diagnostic efficiency, and meet the
preliminary requirement for the diagnosis of this kind of disease
when there is a lack of radiologists.

I. INTRODUCTION

Cone-Beam Computed Tomography (CBCT) is an emerg-
ing medical imaging modality that uses divergent, cone form-
ing X-ray CT. CBCT image is acquired in three-dimensional
space and constituent 2D slices can be used for multiple
plane reconstruction and display a range of morphological
features. CBCT images are routinely used in dental appli-
cations, e.g., for disease assessment and facilitate drafting
pre-treatment plans, as the imaging modality started to be
adopted by dentists in recent years [1]. CBCT has several
advantages over other imaging modality in dental practices,
it is an easily available clinical imaging modality that can
offer an efficient non-invasive scanning in combination with
higher spatial resolution while reducing the radiation dose
and scan costs comparing to X-ray and conventional CTs [2].
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The adoption of CBCT is improving dental disease diagno-
sis, such as diagnosing the transmissive lesions of jawbones,
also known as the space-occupying lesions of jawbones. Its
clinical manifestation involves progressive growth and size
of the lesions that can lead to expansion of the jaws, facial
deformity, and continuous absorption that keep thinning the
bone plate and leading to pathological fractures. Such disease
can also induce decreasing of the pulp vitality of the affected
teeth and abnormal tooth germ development in the affected
area, which not only seriously affects the health of the
patients’ jaw and teeth, but also brings great impact on the
aesthetics, function and psychology of patients and affects
the prognosis [3]. The lesions are usually located inside the
jawbones of the patient, which presents challenges in the
diagnosis due to the surrounding bones. The establishment
of accurate diagnosing of such diseases is of vital importance
for patients’ treatment and recovery. CBCT has been selected
as the ’gold standard’ to diagnose transmissive lesions be-
cause it could provide high accuracy for differential diagnosis
between cysts and granulomas with excellent inter-rater and
good to excellent intra-rater reliabilities [4].

Recent advances in deep convolutional neural networks
(CNNs) have achieved state-of-the-art performances on mul-
tiple computer vision applications, especially on image pro-
cessing. CNNs learns and quantify sophisticated imaging
representations by leveraging large volumes of image data
[5]. In the study by Ker et al. [6], the researchers suggested
that using multiple machine learning algorithms including
CNN is applicable and important in key research areas of
medical image analysis, especially on Computer-Aided De-
tection (CAD) tasks. Published studies have applied several
well-known CNN architectures, such as GoogLeNet [7],
UNet [8] and Overfeat [9] while achieving state-of-the-art
performances in the detection tasks on medical data.

The employment of CNNs in medical image detection
tasks of abnormalities is of great significance for the im-
provement of diagnostic accuracy and efficiency for the
clinic. Despite CNNs have been employed for the diagnosis
of dental diseases including cephalometric landmark detec-
tion [10] and caries detection [11], their role and diagnostic
values have yet been thoroughly investigated in the emerging
CBCT images.

In this paper, we propose an automatic method for de-
tecting transmissive lesions of jawbones using CBCT im-
ages. Specifically, we integrated a pre-trained DenseNet with
pathological information which was employed to reduce the
intra-class variation within each sample that may affect the
performance of the model. Our key contributions are:
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• We quantified imaging representations of the transmis-
sive lesions using a pre-trained DenseNet that was fine-
tuned with a curated dataset. This is the first time for
a CNN architecture to be applied to the transmissive
lesions in the jaw shown on CBCT images.

• We propose a novel technique to integrate pathology
information to the training by separating a single CBCT
image into multiple intervals of slices. Such a method
was determined to resolve the difficulty of applying
CNNs on raw CBCT images. It could also reduce
the computational cost while enhancing the overall
performance.

• We built a CBCT image dataset of the transmissive
lesions of jawbones – the largest dataset evaluation for
this disease.

• We conducted experiments on the detection task and
evaluated the performance of the model, the result
suggested that the detecting system can serve as a
computer-aided assistant for the dentists with the clini-
cal diagnosing procedures.

II. MATERIALS AND METHODS

A. Data Collection and Preprocessing

The DICOM-formatted CBCT images from a total of
353 patients were collected under ethical approval from
the Stomatological Hospital of Wuhan University, China.
Those patients were retrospectively selected with inclusion
criteria as follows: 1) The pathological diagnosis is clear
and the image data are complete, 2) Images with excessive
pseudopacities (including motion pseudopacities and metal
prosthetic pseudopacities), poor image quality or beyond
the field of view (lesions are not completely displayed) are
excluded, 3) The lesion should have a single pathological
type (multiple lesions should also have the same pathological
type), images containing multiple lesions with the coexis-
tence of multiple pathological types were excluded. 4) All
cases should be confirmed by histopathology examinations
after the surgery. An anonymization process was taken to
remove all personally identifiable information (PII) for each
patient after the inclusion.

There were multiple subtypes of the transmissive lesions
of jawbones, we manually selected four types of sub diseases
to be allocated including the ameloblastoma, periapical cyst,
dentigerous cyst and odontogenic keratocyst. The curated
dataset is comprised of 89 ameloblastoma patients, 83 pe-
riapical cyst patients, 51 dentigerous cyst patients and 130
odontogenic keratocyst patients were collected and stored in

TABLE I
THE GENERATED CBCT IMAGE DATASET

Sub-disease Category Patients # Class I Slices Class II Slices
Ameloblastoma 89 31488 13073
Periapical Cyst 83 35173 5336

Dentigerous Cyst 51 19739 4339
Odontogenic Keratocyst 130 45293 19692

Fig. 1. Illustration of CBCT. The Slice Stacks showed the nature of CBCT
that each CBCT data contains multiple 2D slices, forming a stack. The
example slices with red names were all classified as disease slices during
the labelling process, including 4 types of sub-diseases of the transmissive
lesions of jawbones. The bottom right slice shows an example of normal
slices that contain no lesion.

the database. The detailed information of the dataset is shown
in Table I.

All the patients were patients with the disease and has one
CBCT data which was composed of volumes of slices. The
annotation process was manually taken under the guidance
of radiologists to label each slice as one of the two classes:
Class I: normal slices, and Class II: disease slices. An
example of CBCT slices and the sub-diseases were illustrated
in Fig 1.

B. CNN Architecture

DenseNet was selected for our experiment because of
its generalisability for different tasks and its capability to
comprehensively quantify imaging representations within the
data. The unique network architecture of DenseNet helps
to make it easier to capture all the necessary information
as dense connections concatenate the output of the previous
layer with the future layer [12]. The framework is designed
to ensure the maximum information flow between layers in
the network as all layers are connected directly with each
other. To preserve the feed-forward nature, each layer obtains
additional inputs from all preceding layers and passes on its
feature maps to all subsequent layers. Hence, the lth layer
has l inputs, consisting of the feature-maps of all preceding
convolutional blocks. Its feature maps were passed on to
all the L − 1 subsequent layers. This introduces L(L+1)

2
connections in an L-layer network, instead of just L in
traditional architectures.

For each function Hl produces k feature-maps, it follows
that the lth layer has k0 + k × (l − 1) input feature-maps,
where k0 is the number of channels in the input layer. The
hyperparameter k was referred to as the growth rate of the
network, it provides the important advantage as DenseNet
can have very narrow layers by adjusting k. DenseNet has
demonstrated its performance in the medical field: CheXNet
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Fig. 2. Dense Block Architecture: Each layer takes all preceding feature-
maps as input [12].

is a modified DenseNet that achieved an average AUROC
of 84.14% on 14 pathologies in the ChestX-ray14 dataset,
which had a margin of > 0.05 over the previous state of the
art results [13].

III. EXPERIMENT

A. Dataset

Each CBCT image of the transmissive lesions within our
dataset consisted of approximately 500 2D image slices.
However, there were only around an average of 100 slices
that were labelled as disease slices; the remaining slices
before and after the lesion were all labelled as normal. As the
CBCT scaned through the entire head section of the patient,
the slices located in the bottom jaw area showing the teeth
can have the same label as the slices located in the top of
the head containing the brain, which increased the intra-class
variation (the slices with the same class are having huge
differences in their imaging features) within the normal class
due to the different biological feature of brain and jaw.

We introduced a novel technique that employs the pathol-
ogy information to eliminate the intra-class variation within
each sample that may affect the performance of the model.
As the largest amount of slices for a single patient was
521 within all collected samples, we divided the 500+ slices
into multiple volume sections with a fixed number of slices
and trained them separately. Hence, within each section,
slices with the same labels share a bunch of much similar
biological features. We determined that every 75 slices will
be considered as a slice section because the disease images
are concentrated in the slice range of 100 to 200, with the
use of 75 slices, we can establish image sets with similar
disease vs. normal class ratio. As a result, image volumes
were partitioned into 7 sections. However, the distribution of
disease-containing slices in section 6 and 7 was lower than
1%, hence these two sections were excluded. With reduced
image slices, the training computation efficiency is increased
because smaller input volume will allow the network to focus
more on the subtle differences among images.

The training, validating and testing sets were split using
the patient-wise image division method as shown in Fig 3.
This method enables the model to become robust, consistent
and more generalizable as it treats each patient rather than
each slice as a training sample by splitting all the slices
belonging to the same patient into one of the three image sets

Fig. 3. Patient-wise image division method: An illustration of the division
method we utilized during the splitting of training and testing sets. In this
example, there are five patients, each uniquely colour-coded. One patient
(Patient E) is assigned to the testing set. The four remaining patients are
allocated to the training set. The validation set is split out using the same
method and then the slices in the training set will be shuffled.

(training, validation or testing) respectively. A 5-fold cross-
validation method was also adopted for the average accuracy
calculation that is more reflective of the performance of
the model on detecting the disease as well as showing the
robustness with the use of different pairs of training and
testing sets.

B. Implementation Details

We utilized the pre-trained torchvision Densenet-161
model, all the slices were resampled into a fixed size of
224 × 224. During the training process, the parameters on
dense blocks 3 and 4 and the corresponding transition blocks
were frozen. Another adjustment made to the model was the
fully connected layer, it was modified to output the required
predictions as there were two classes in total. The model was
trained end-to-end with the Adam optimization method and
the learning rate was set to 1×10−4 so as not to overshoot
the optimal solution. Moreover, the learning rate schedule
has been applied, whereby the learning rate is decayed by
5% for each training epoch. All the experiments were carried
out using the NVIDIA GeForce RTX 2080 Ti GPU with 11
GB memories. The batch size was set to 32 for the training
and validating processes, the testing process was set to have
one sample per batch so as it will return the real prediction
for that particular slice.

IV. RESULT AND DISCUSSION

We applied the same model architecture to all five slice
sections, the accuracy and AUC score for each section have
been obtained and shown in Table II. The overall percentage
within the table was calculated as:

OP =
Correctly Predicted Sample Number

Total Number of Testing Samples
(1)

where OP stands for overall percentage. Because of the dif-
ferent number of testing samples for each section, calculating
the average of all 5 accuracies cannot reflect the true ability
of the model.
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As shown in Table II, the averaged accuracy across all
5 sections was 80.49%, suggesting that the application of
CNN is capable of detecting transmissive lesions displayed
on CBCT images. However, the worst corresponding AUC
score was 0.5122, which was caused by numerous false
positive predictions, as the samples that have the actual class
as disease were misclassified as normal. We attributed this
finding to the exaggerated proportion of disease slices (6%)
within section 5 that made the model heavily skewed to
normal samples.

The result was also higher than the baseline experi-
ment that was trained without the image partition method
(77.18%). The result with the proposed method was not
only having a higher average accuracy but also having a
smaller number of false-positive predictions than the base-
line, demonstrating the importance of the proposed image
partition based on the integration of pathological information.

We attribute the variance between the training accuracies
across different sections to the differences in anatomical
features. Images belonging to section 1 contain the hyoid
bone and body of the mandible. The posterior area within
the image is the ridged cone which is not in the dental scope.
From the images in section two, mandibular alveolar bone,
mandibular teeth, and posterior mandible can be observed.
Mandibular ascending ramus and maxillary teeth are the
main component of the images within section three. In
section 4, maxilla and maxillary sinus can be seen as well
as some nasal tissue and organs such as nasal septum and
turbinate. The last section contains the images from the
zygomatic to the zygomatic arch. With the difference in the
presenting organs and tissue and their various complexity, the
features to be learnt are different. Differences between image
proportions were also considered as a factor that contributed
to the changes in the training accuracies.

TABLE II
PERFORMANCE OF THE MODEL ON DIFFERENT SECTIONS

Section Accuracy AUC Disease Slices %
1 0.9201 0.8100 18%
2 0.7366 0.7505 56%
3 0.6407 0.6437 50%
4 0.7586 0.6332 29%
5 0.9680 0.5122 6%

Overall 0.8049

V. CONCLUSION

We propose an automatic method for detecting trans-
missive lesions of jawbones using CBCT images. A pre-
trained DenseNet was integrated with pathological infor-
mation where the pathology information was employed to
eliminate the intra-class variation. Our results show that
the CBCT image data-set, comprising of different types
of transmissive lesions of the jawbone, can be effectively
classified into disease and normal with an overall accuracy
of 80.49%.

For future research, we will explore 3D CNN models to
better learn the sequential information within CBCT data.

Our future work will take into consideration of the growing
CBCT datasets. We will further optimise our methods to
be more generalisable for different datasets and to different
disease types.
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