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Abstract— Disrupted functional and structural connectivity
measures have been used to distinguish schizophrenia pa-
tients from healthy controls. Classification methods based on
functional connectivity derived from EEG signals are limited
by the volume conduction problem. Recorded time series at
scalp electrodes capture a mixture of common sources signals,
resulting in spurious connections. We have transformed sensor
level resting state EEG times series to source level EEG
signals utilizing a source reconstruction method. Functional
connectivity networks were calculated by computing phase lag
values between brain regions at both the sensor and source level.
Brain complex network analysis was used to extract features
and the best features were selected by a feature selection
method. A logistic regression classifier was used to distinguish
schizophrenia patients from healthy controls at five different
frequency bands. The best classifier performance was based on
connectivity measures derived from the source space and the
theta band.

Clinical relevance– The transformation of scalp EEG sig-
nals to source signals combined with functional connectivity
analysis may provide superior features for machine learning
applications.

I. INTRODUCTION

Schizophrenia (SZ) is a severe psychiatric disorder af-
fecting approximately 1% of the US population [1]. There
is compelling evidence that schizophrenics have abnormal
structural and functional connectivity at both the microscopic
and macroscopic scale [2]–[5]. Machine learning techniques
have been used previously to distinguish schizophrenic pa-
tients from healthy controls based on brain connectivity [6]–
[9].

Most studies of brain connectivity measurements in SZ
patients have used fMRI data [6]–[8]; few have utilized
abnormal EEG-based connectivity measures for classification
[9], [10]. fMRI has less temporal resolution and higher
costs than EEG. Most EEG-based classification studies have
used scalp measurements. Due to the volume conduction
problem, the recorded time series at scalp electrodes captures
a mix of overlapping activities from common sensors. Brain
connectivity measurements obtained at the scalp can suggest
non-existent connections. We have compared classification
using features derived from functional connectivity networks
based on resting state EEG signals derived from both the
sensor (scalp) space and the source (cortical) space.
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II. METHODS

A. EEG Measurements

A previously published EEG data set of 14 schizophrenia
patients (7 males: 27.9 ± 3.3 years, 7 females: 28.3 ±
4.1 years) and 14 control cases (7 males: 26.8 ± 2.9, 7
females: 28.7 ± 3.4 years) were utilized [11]. Each subject
was recorded for fifteen minutes during a resting state eyes
closed condition. The time series was recorded using a 10-20
standard system from 19 electrodes: Fp1, Fp2, F7, F3, Fz,
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2. The
sampling frequency rate to acquire EEG signals was 250 Hz,
with a reference electrode located at FCz. This research was
exempt from Institutional Review Board approval based on
the following exemption: projects limited to accessing and
use of de-identified public datasets.

B. EEG preprocessing

Offline EEG preprocessing was done with MATLAB using
Brainstorm [12]. The power line noise was removed using a
notch filter at 50, 100 and 150 Hz. Data was high-passed
with the cutoff frequency of 0.2 hz and low-passed with
the cut off frequency of 50 hz to remove high-frequency
noise including muscle artifacts. The reference electrode was
changed offline according to the AVERAGE method. After
visually inspecting the EEG signals and manually removing
bad segments, signals were decomposed by independent
component analysis (ICA) [13] using the Infomax algorithm
in Brainstorm. Any non-cerebral independent components
related to artifacts were removed manually and only com-
ponents corresponding to cerebral activity were retained as
a clean signal. A source reconstruction method was used to
extract the source level EEG time series using Brainstorm
[12]. This reconstruction depended on the exact spatial ar-
rangement of the electrodes on the scalp (channel positions),
an estimate of the geometrical and electrical properties of the
head (head model), and the location and/or the orientation
of the sources within the head (source model). The channel
positions were imported into Brainstorm using the location of
a 19 channel 10-20 standard EEG system. The head model
was obtained by the boundary element method in OPEN-
MEEG based on the default anatomy in the Brainstorm
(ICBM152 anatomy). The source model was created by
randomly distributing 15000 sources at the cortex with the
orientation of the sources perpendicular to the surface. The
time series of the sources were computed using the minimum
norm estimate (MNE) method with an identity matrix as the
noise covariance. EEG signals at source and sensor levels
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were filtered into frequency bands of 2-4 Hz (delta), 4-7
Hz (theta), 8-13 Hz (alpha), 13-30 Hz (beta), and 30-45 Hz
(gamma).

C. Functional Connectivity Computations

Source and sensor level EEG time series were divided into
epochs as quasi-stationary time series, each with a duration
of 2 minutes. Functional connectivity measures were com-
puted for the first 2 minute epoch by computing the phase
lag index (PLI) [14] between any two brain regions. Phase
lag index (PLI) is less sensitive to the volume conduction
problem and is bounded between 0 and 1. PLI is zero if
there is no coupling or coupling is around phase 0 mode π.
PLI is 1 if there is phase locking or the phase difference is
other than 0 mode π. The brain networks are considered as a
graph of N nodes (each representing different brain regions)
with E edges (each representing the connection between pairs
of nodes).

D. Graph Metric Computation

The brain network metrics were computed using complex
network analysis from MATLAB [15]. Eleven graph metrics
were selected for analysis: strength, transitivity, betweenness
centrality, participation coefficient, local efficiency, ratio of
local to global efficiency (RL2GE), modularity, assortativity,
characteristic path, and small worldness. A brief explanation
of each metric follows [15].

The simplest graph metric is degree, defined as the number
of edges connected to a node. Strength, a weighted variation
of degree, is the sum of all the neighboring link weights
for each node. Betweenness centrality is the fraction of all
shortest paths passing through a specific node. Clustering
coefficient is the tendency of the nodes in a network to create
clusters. It is calculated as the fraction of triangles (three
fully connected nodes) to the triplets (three nodes that are
not fully connected) in the network. Transitivity is a variation
of the clustering coefficient utilizing a different normalization
method. Modularity specifies the degree to which a network
can be divided into non overlapping subgroups of nodes, such
that the number of within-group edges is maximized and the
number of between-group edges is minimized. Characteristic
path is defined as the average shortest path length in a
network and global efficiency measures the average inverse
shortest path length in the network (characteristic path
reflects longer paths and global efficiency reflects shorter
paths). We also calculated the ratio of local efficiency to
global efficiency. Assortativity is the correlation coefficient
between the degrees of all nodes on two opposite ends of
a link. A positive assortativity coefficient reflects a network
with a strong core of mutually interconnected high-degree
hubs. In contrast, a negative assortativity coefficient reflects
a network with widely distributed high-degree hubs. Small-
world networks are a middle ground between regular and
random networks, while containing high transitivity (like
regular networks), yet exhibiting small characteristic path
length (like random networks). To quantify small worldnesss,
the ratio of transitivity to characteristic path length of the

graph was calculated and compared to the same quantity
computed for its equivalent random graph. Participation
coefficient is the extent to which scattered nodes connect
to other modules. High participation coefficients indicate a
node which is connected uniformly across all modules, while
a low participation coefficient reflects a node which is more
connected to the nodes within its own module.

E. Feature Selection and Classification

We examined multiple feature selection methods to re-
duce the number of input features and improve classifier
performance. We selected a univariate filter algorithm to
rank features by the ANOVA F-score. Based on empirical
performance, we selected k=10 features to enter into a lo-
gistic regression classifier. A 10-fold cross validation strategy
was used to evaluate model performance including accuracy,
sensitivity and specificity (mean ± SD).

III. RESULTS

The location and amplitude of the reconstructed sources
are displayed in a 3D graph at 2 nominal time values in Fig.
1. High amplitude brain activity is observed over the right
temporal lobe at the 70 second time-point and over both
occipital areas at the 120 second time-point. The time series
generated by the source electrodes were projected onto 148
ROIs as defined by the Destrieux Atlas [16]. Mapping was
done by flipping the orientation of sources in the opposite
direction and averaging them over an ROI.

Functional connectivity networks were computed for each
subject in the source and sensor spaces. Connectivity mea-
sures were computed over 2 minute epochs for each subject.
The network was represented as a N ∗N weighted adjacency
matrix where rows and columns corresponded to a specific
brain region and each cell corresponded to the connectivity
measure between the column region and the row region.
For the sensor space, N is the number of EEG channels
(N = 19) and for the source space N is the number of region
of interest (N = 148). The diagonal (identity) elements were
set to zero. The adjacency matrices were obtained for five
distinct frequency bands. Thresholds were set for values in
the weighted adjacency matrices to preserve a p portion of

Fig. 1. Source reconstruction. Source level brain signals are estimated
using the minimum norm estimate (MNE) method in Brainstorm software.
The head model is obtained using the boundary element method in OPEN-
MEEG based on the default anatomy in the Brainstorm (ICBM152 anatomy)
and the source model is created by randomly distributing 15000 sources at
the cortex surface with perpendicular orientation to the surface. Color scale
reflects amplitude of source level signals prior to connectivity analysis.
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Fig. 2. Functional connectivity graph for the alpha band displayed for one subject. The graphs demonstrate 20% of the strongest connections in the
network. For the source-based graph, the nodes are arranged right-left symmetrically. For the sensor-based graph, the arrangement of electrodes is not
right-left symmetric. Left-sided electrodes are odd numbered, right-sided electrodes are even numbered (e.g. F4, T4, T6) by convention. Left: Functional
connectivity graph for the source space. Right: Functional connectivity graph for the sensor space.

TABLE I
GROUP MEANS AND ANOVA F-VALUES FOR THE TEN HIGHEST-RANKING FEATURES FROM THE SOURCE AND SENSOR SPACES (THETA BAND)

Graph metric Source Space ROIs SZ mean Control mean ANOVA F-value
Strength Inferior temporal sulcus L 29.01 36.39 29.60
Ratio of local to global efficiency Transverse temporal sulcus L 1.32 1.29 17.47
Ratio of local to global efficiency Posterior ramus of the lateral sulcus L 1.24 1.20 14.64
Ratio of local to global efficiency Temporal pole L 1.22 1.20 13.03
Ratio of local to global efficiency Planum temporale L 1.28 1.26 12.47
Ratio of local to global efficiency Anterior transverse temporal gyrus L 1.22 1.17 11.39
Strength Calcarine sulcus R 34.83 30.77 35.43
Strength Inferior temporal sulcus R 27.89 36.11 10.85
Strength Inferior part of the precentral sulcus R 16.51 21.09 10.66
Ratio of local to global efficiency Parahippocampal gyrus L 1.21 1.23 10.39
Graph metric Sensor Space ROIs SZ Mean Control Mean ANOVA F-value
Betweeness centrality O2 22.61 42.28 32.38
Participation coefficient Cz 0.31 0.39 9.93
Participation coefficient T5 0.11 0.27 6.20
Betweeness centrality F7 16.76 21.14 5.98
Participation coefficient O2 0.51 0.57 5.72
Clustering Coefficient P3 0.34 0.29 5.62
Transitivity Global measure 0.42 0.38 5.23
Strength F7 3.2 3.70 4.81
Participation coefficient C4 0.21 0.23 4.75
Local Efficiency Fp2 0.56 0.54 4.49

TABLE II
COMPARISON OF THE SCHIZOPHRENIA CLASSIFIER IN BOTH SOURCE AND SENSOR SPACE USING EEG-BASED FUNCTIONAL CONNECTIVITY AT

DIFFERENT FREQUENCY BANDS

Source Space Alpha Theta Beta Delta Gamma
Accuracy 0.93 (±0.18) 0.97 (±0.13) 0.93 (±0.18) 0.75 (±0.19) 0.92 (±0.20)
Sensitivity 0.93 (±0.27) 0.95 (±0.25) 0.90 (±0.30) 0.67 (±0.38) 0.93 (±0.27)
Specificity 0.91 (±0.22) 0.98 (±0.23) 0.92 (±0.28) 0.80 (±0.32) 0.90 (±0.23)
Sensor Space Alpha Theta Beta Delta Gamma
Accuracy 0.71 (±0.26) 0.89 (±0.30) 0.86 (±0.28) 0.70 (±0.57) 0.73 (±0.40)
Sensitivity 0.67 (±0.30) 0.90 (±0.23) 0.67 (±0.30) 0.67 (±0.32) 0.60 (±0.45)
Specificity 0.70 (±0.23) 0.93 (±0.27) 0.70 (±0.43) 0.73 (±0.27) 0.60 (±0.32)
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the strongest weights for each brain network. To select the
optimal value for p, a search was conducted over the interval
[0.01, 0.8] with incremental steps of 0.01. The value of 0.19
yielded the best classifier performance. Each subject was
represented as a graph. Functional connectivity graphs at the
source and sensor space in the alpha band are shown for one
subject (Fig. 2).

Brain complex network analysis was employed to create
a feature vector for each subject. For each local measure,
N (the number of nodes in the network) features were
calculated. The five local measures (strength, betweenness
centrality, participation coefficient, local efficiency and ratio
of local to global efficiency) generate 5*N features and
are added to five global features (modularity, transitivity,
assortativity, characteristic path length and small worldness),
giving 5 ∗ 148 + 5 = 745 features in the source space and
5 ∗ 19 + 5 = 100 features in the sensor space.

Based on a univariate feature filter, we selected the 10
best features from the source and sensor spaces to enter
into a logistic regression classifier. Table I shows the region
of interest and the graph metric for the ten highest rank-
ing features that differentiated between the SZ and control
groups (ANOVA F-values). For instance, inferior temporal
sulcus at the left side of the head has higher strength
in the control groups compared to SZ patients. Similarly,
betweenness centrality at O2 electrode is higher for controls
compared to SZ patients. The classification model derived
from functional connectivity measures from the source space
outperformed the model based on the sensor space (Table II.
Classification performance differed by frequency band with
the best classification performance was observed for the theta
band in the source space. This supports the findings of [17],
who found a higher functional connectivity for most of the
ROI pairs for SZ patients as compared to healthy subjects.
Also, [18] found increased brain connectivity in the theta
band for schizophrenia subjects.

IV. CONCLUSIONS

We discriminated between schizophrenia patients and
healthy controls using functional connectivity measurements
derived from resting state EEG recordings. The sensor level
EEG recordings at the scalp were transformed to source
space EEG time series by source reconstruction. The phase
lag index was used to calculate the functional connectiv-
ity network. Complex brain network analysis was used to
characterize the quantitative features of each network. A
logistic regression classifier was used to distinguish SZ
patients from healthy controls based on a subset of the
most significant features. The performance of the classifier
was compared for the sensor space and source space at
five different frequency bands: alpha, theta, beta, delta and
gamma. Better classifier performance was observed using
the source space and the theta band. Previously, quantitative
EEG (qEEG) has been used for classification, using the
power at various locations and frequencies [19]. Connectivity
analysis provides an alternative approach to the derivation

of features for classifiers. In the future, we plan head-to-
head comparisons of classifiers using qEEG derived features
against connectivity-derived features.
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