
  

  

Abstract— Spontaneous pupil size fluctuations in humans and 

mouse models are noninvasively measured data that can be used 

for early detection of neurodevelopmental spectrum disorders. 

While highly valuable in such applied studies, pupillometry 

dynamics and dynamical characteristics have not been fully 

investigated, although their understanding may potentially lead 

to the discovery of new information, which cannot be readily 

uncovered by conventional methods. Properties of pupillometry 

dynamics, such as determinism, were previously investigated for 

healthy human subjects; however, the dynamical characteristics 

of pupillometry data in mouse models, and whether they are 

similar to those of human subjects, remain largely unknown. 

Therefore, it is necessary to establish a thorough understanding 

of the dynamical properties of mouse pupillometry dynamics 

and to clarify whether it is similar to that of humans. In this 

study, dynamical pupillometry characteristics from 115 wild-

type mouse datasets were investigated by methods of nonlinear 

time series analysis. Results clearly demonstrated a strong 

underlying determinism in the investigated data. Additionally, 

the data’s trajectory divergence rate and predictability were 

estimated. 

I. INTRODUCTION 

Spontaneous pupil size fluctuations are controlled by the 
autonomous nervous system. Even under constant conditions 
pupil size fluctuates and produces complex, seemingly random 
dynamics [1,2]. Pupil size fluctuations can be used to track 
changes in mental states and behavioral performance [3]. 
Pupillometry data of both human subjects and animal models 
have been utilized in numerous applied studies [1-6], including 
those on neurodevelopmental disorders [4,5]. This makes a 
thorough understanding of the dynamics of pupillometry an 
essential task.  

The activity of the brain is highly fluctuating even at the 
resting state. This intrinsic brain fluctuation may influence the 
control system of the pupil to produce spontaneous pupillary 
fluctuations in the time series waveform that possesses a great 
complexity. Yet, while there are numerous applied studies 
involving pupil size fluctuations, there seem to be few that 
investigate its dynamics and properties in detail. In [1,2] 
pupillometry dynamics from healthy human subjects was 
investigated by methods of nonlinear time series analysis, 
which have been found useful in numerous studies on the 
dynamics of complex biological signals [7]. In [1,2] the 
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applied analysis included the time-delay-reconstruction 
method, the method of surrogate data, and calculation of 
correlation dimension, the largest Lyapunov exponent, 
recurrence plot, recurrence rates and determinism, which are 
recurrence plot quantification analysis measures. As a result, 
the determinism of the healthy human subjects’ data was 
reported in both studies, and, additionally, in [2] its dynamics 
was claimed to be deterministic chaos.  

Spontaneous oscillations of pupil size in mouse models 
have been taken as a noninvasive biomarker to address such 
important and challenging problem as the early detection of 
neurodevelopmental disorders like autism [5]. Full 
understanding of the underlying pupillometry dynamics and 
the extent to which their properties are similar across species 
may provide new valuable information that could not be 
uncovered by previously applied analysis methods, potentially 
yielding better results in existing studies. While some attention 
has been paid to human pupillometry dynamics as above, 
practically no studies have investigated the pupillometry 
dynamics of mice, which can be experimentally manipulated 
in preclinical models. Thus, a detailed investigation of mouse 
pupillometry dynamical characteristics is needed.  

Pupillometry data from wild-type (WT) mice are used as a 
control for comparison with diseased mouse models [5]. So, in 
this study, we aimed to confirm whether the WT mouse 
pupillometry data have dynamical characteristics similar to 
those of healthy human subjects, whose dynamics were found 
to be deterministic and even claimed to be chaotic [1,2]. 
Presence of ‘determinism’ implies that the dynamical system 
is determined by a certain rule and its evolution is defined by 
the current state and past information, making it one of the 
defining properties of deterministic chaos. However, it is a 
very challenging task to prove that experimentally measured 
pupillometric data have chaotic dynamics. So, in this study, 
besides the determinism criterion, we estimated two more 
important properties of complex dynamical systems, namely 
trajectory divergence and predictability, which can provide a 
clue on the underlying pupillometry dynamics. The presence 
of trajectory divergence as well as the possibility to obtain 
short-term predictions, i.e. forecast process state in short-time 
(but not long-time) evolution, are important properties of a 
chaotic dynamical system. Thus, the determinism, trajectory 
divergence, and predictability of collected WT data [5] were 
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carefully tested by multiple methods of nonlinear time series 
analysis.   

II. MATERIALS AND METHODS  

A. Data 

Here, spontaneous pupillary fluctuation data recorded by 
an infrared camera with 50 Hz sampling frequency from 115 
WT mice were used. Awake mice were head-fixed but freely 
moving on a circular treadmill under dim light conditions 
(50 lux) to allow pupil fluctuations [5]. Pupil size data were 
collected over 30-minute periods by an infrared camera aimed 
at the right eye. Data included a variety of age groups from 
postnatal day P20 to P369. Animal care and experimental 
procedures were performed in accordance with protocols 
approved by the Boston Children’s Hospital Institutional 
Animal Care and Use Committee [5]. Detailed information on 
the experimental procedure can be found in [5]. 

Data were preprocessed by a low-pass filter with a 
passband frequency of 6 Hz before the analysis. An example 
of the resulting pupillometry time series is shown in Fig. 1. 

B. Analysis 

Methods of nonlinear time series analysis were applied to 
the WT mouse pupillometry data to unveil its dynamical 
properties. Most of the methods of nonlinear time series 
analysis require complete state-space information of the 
process dynamics. However, for the experimentally measured 
data often only a single variable observation is all that is 
available. The method of time-delay reconstruction [7] allows 
one to obtain possible dynamics of the process in m-
dimensional phase space based on single variable observation, 
x(t). Therefore, first, the possible dynamics was reconstructed 
in the phase space by the time-delay embedding technique.  

To avoid reliance on a single measure to test pupillometry 
dynamics properties, multiple tests were applied to the 
reconstructed trajectory. The Wayland test translation error 
(WTE) [8], which allows to estimate determinism of the data 
as well as provides an estimate on the level of the noise present 
in the data, was calculated. Then, the recurrence plot (RP) 
method [9], which utilizes neighborhood relations to visualize 
m-dimensional system dynamics as a 2-dimensional binary 
image, was applied. Depending on the type of system’s 
dynamics RP has a unique pattern that qualitatively 
characterizes a dynamical system. As the RP provides only 
qualitative characteristics of investigated data, the recurrence 
quantification analysis (RQA) [9] was performed. RQA 
quantifies underlying structures in RP, and, therefore, allows 
one to go beyond RP image-based qualitative results. Then the 
largest Lyapunov exponent (LLE), which provides qualitative 
and quantitative characteristics of the dynamical system, was 
calculated. Qualitatively, a positive LLE implies the presence 
of trajectory divergence and is recognized as a hallmark of 
chaos. Quantitatively the value of the LLE measures the 
trajectories divergence rate. As the LLE reflects important 
properties of a dynamical system, it is one of the methods of 
nonlinear time series analysis frequently used in applied 
studies. In this study, the LLEs were calculated by the 
Rosenstein et al. method [10]. Finally, the deterministic 
nonlinear prediction method was applied to estimate data’s 
predictability. Presence of the short-term predictability can be 
recognized as a sign of data determinism [7]. Additionally, the 

method of surrogate data [11] was applied to the LLE and 
prediction results to address the issue of the noise 
contamination in the experimental data. 

 

Figure 1. An example of preprocessed wild-type mouse spontaneous 
pupillary fluctuations time series. 

III. RESULTS 

A. Time-Delay Reconstruction 

The time-delay-reconstructed trajectory was calculated for 
all datasets. The dimension necessary for the reconstruction 
was estimated by the false nearest neighbors method [7]. The 
minimum embedding dimension was estimated as m=4 for 22 
datasets and as m=3 for the rest of the datasets; therefore, the 
reconstruction dimension was chosen as m=4 for further 
calculations. The value of time delay, τ, applied in time-delay 
reconstruction was chosen as the time when the time series 
autocorrelation function falls below (1-1/e). Figure 2 
demonstrates an example of the time-delay-reconstructed 
trajectory corresponding to the time series shown in Fig. 1. 

B. Wayland Test Translation Error (WTE) 

Figure 3 demonstrates the distribution of WTEs calculated 
for all datasets. The WTE values close to 0 indicate strong 
underlying determinism in the data. In contrast, a stochastic 
process, such as colored noise, produces a WTE value close to 
0.5 [12], and an uncorrelated random process, such as white 
noise, produces a WTE value close to 1. Although there is no 
clear WTE-value boundary between deterministic and 
stochastic processes, in previous studies it was discussed 
[12,13] that WTE values significantly larger than 0, but less 
than 0.5 can be produced by a deterministic process with a 
considerable level of noise contamination.  

 

Figure 2. An example of pupillometry time-delay-reconstructed trajectory 
in the 4-dimensional phase space. 

 

Figure 3.  Distribution of the Wayland test translation error values for 115 
wild-type mouse pupillometry datasets. 
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C. Recurrence Plot (RP) and Recurrence Quantification 

Analysis (RQA) 

In this study, the calculated RP size was 10000x10000 
points. The threshold, which is a parameter required for RP 
calculation, was chosen as 5% of the size of the trajectory 
reconstructed in the phase space. To obtain quantitative 
measures of the pupillometry dynamical characteristics, RQA 
[9] was conducted on obtained RPs. In this study, the 
following RQA measures were calculated: determinism 
(DET), maximal diagonal line length (Lmax), average diagonal 
line length (L), and entropy (ENTR). Obtained results are 
summarized in Table 1. 

TABLE I.  SUMMARY OF THE RECURRENCE QUANTIFICATION 

ANALYSIS RESULTS 

Stats 
RQA measure 

DET L Lmax ENTR 

min 0.736 4.167 28 1.807 

max 0.997 59.931 9499 3.801 

mean 0.966 23.630 3036.435 2.937 

deviation 0.040 11.982 2647.737 0.425 

D. Largest Lyapunov Exponent (LLE) 

The distribution of calculated for all data LLEs is shown in 
Fig. 4 (blue bars). As seen in Fig. 4, all the LLEs are positive, 
however, the presence of noise cannot be overlooked as a 
factor that can cause overestimation of the LLE value. To 
address the problem of noise in experimental data the method 
of surrogate data was applied to verify the results of the LLEs 
calculation. For each pupillometry time series 100 Fourier 
transform phase-randomized surrogates [11] were generated, 
and its LLEs were calculated. Then it was tested whether or 
not the original time series LLE is within its surrogates’ LLEs 
distribution. Figure 4 demonstrates the distribution of 100 
surrogate data LLEs (yellow bars with dashed line border) and 
the LLE value (red diamond-shaped mark) of the original time 
series (shown in Fig. 1) to which these surrogates correspond. 

 

Figure 4. Results of the Lyapunov exponent estimation. Distribution of 
the largest Lyapunov exponents for 115 wild-type mouse pupillometry 
datasets (blue bars), the value of the largest Lyapunov exponent of the dataset 
number 1 (red diamond-shaped mark), and the distribution of the largest 
Lyapunov exponents calculated for the 100 phase-randomized surrogates 
corresponding to the dataset number 1 (yellow bars with dashed line outline). 

E. Deterministic Nonlinear Prediction 

Investigated data predictability was estimated by the 

deterministic nonlinear prediction method. The correlation 

coefficient (CC) between original and predicted data for the 

time series in Fig. 1 is shown in Fig. 5 (red dashed line), where 

the prediction step indicates how many data points ahead 

system state is predicted, and each step corresponds to the 

physical time equal to the sampling step. The distribution of 

the CC for the 10 steps prediction for all data is shown in Fig. 

6. Similarly to the LLE results, the phase-randomized 

surrogate data were used to test noise influence on the 

prediction performance. The CC curves characterizing 

predictability for 50 surrogate time series are shown in Fig. 5 

(black solid lines).  

 
Figure 5. Deterministic nonlinear prediction results. The correlation 

coefficient between original and predicted data for the original pupillometry 
time series (red dash-dotted line) and for its 50 surrogates (black solid lines). 

 
Figure 6. Distribution of the correlation coefficient for 10-steps forward 

prediction for 115 wild-type mouse pupillometry datasets.  

IV. DISCUSSION 

The conducted analysis aimed to test different properties 
of WT mouse spontaneous pupillary fluctuation dynamics [5], 
in order to clarify whether these properties are similar to those 
of healthy human subjects reported previously to be 
deterministic and chaotic [1,2]. First, the minimum embedding 
dimension – offering an estimate of the number of variables in 
the dynamical system involved in the creation of pupillometry 
dynamics – was estimated as 4, which might reflect, for 
example, the number of major neuromodulatory systems 
(ACh, NE, DA, 5HT) affecting process dynamics. The 4-
dimensional time-delay-reconstructed trajectories calculated 
for all datasets demonstrated the presence of a certain structure 
which implies the existence of an attractor. Based on the 
obtained trajectories, methods of nonlinear time series analysis 
were applied to the collected data. 

One of the primary goals of this study was to demonstrate 
that similar to human subjects, mouse pupillometry dynamics 
are deterministic. Pupillometry dynamics are extremely 
complex, possibly due to interaction with intricate fluctuations 
produced by the brain. At the same time, experimental data 
tend to contain a certain amount of noise of unknown nature, 
which could be almost indistinguishable from the process 
dynamics. Therefore, rather than relying on a single test, 
multiple methods are preferable to test the data’s dynamical 
properties. We diagnosed the determinism of pupillometry 
dynamics using three methods: the Wayland test, RQA’s DET 
calculation, and short-term predictability estimation. The 
WTE values close to 0 (Fig. 3), DET values close to 1 (Table 
1), and presence of short-term predictability (Fig. 5 and 6) 
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identified strong underlying determinism in the data. 
However, as seen in Fig. 3 and Table 1, calculated values for 
several datasets were larger than 0.1 and less than 0.9 for WTE 
and DET, respectively. This means that a certain amount of 
noise is likely to be mixed in the data. The presence of 
observational noise is almost unavoidable for experimental 
data. At the same time, the biological system itself may 
produce a system or dynamic noise. Distinguishing types of 
noise and its levels mixed into the data is highly challenging, 
but an increase in the WTE value is expected to reflect an 
overall increase in the noise level [12,13]. Therefore, we can 
conclude that we are dealing with noise-contaminated 
deterministic data. Additionally, it is worth mentioning that 
while the presence of dynamical noise makes dynamics 
analysis more complicated, once extracted from the signal, 
dynamical noise may provide important information itself.   

As the next step, the LLE was calculated to clarify the 
trajectories divergence rate. As seen from the distribution in 
Fig. 4, all LLEs were positive, however, their values were 
rather small. Positive LLE value is traditionally recognized as 
an indicator of deterministic chaos; however, data length 
limitations, imperfection of existing LLE estimation 
algorithms, as well as presence of noise in the data may lead 
to misestimation of the LLE. Trajectory divergence is also 
linked to the RQA’s Lmax measure, which is the inverse of the 
divergence. On average, large Lmax (Table 1) indicates small 
divergence in the investigated data, which is consistent with 
the obtained LLE values. Several datasets demonstrated low 
Lmax values. Taking into account that the same datasets have 
higher WTE and lower DET values, low Lmax values are likely 
due to the effect of noise in the data, as the noise disturbance 
of the trajectory leads to misidentification of the neighborhood 
and the RP diagonal line interruption.  

Taking into account the noise contamination issue, to 
verify the reliability of the obtained LLE results, the method 
of surrogate data was applied. When there is a clear separation 
between the results corresponding to the original time series 
and the surrogate data results, or if the original results lie 
within less than 5% of the surrogate results distribution, we 
can assume reliability of the obtained results despite the 
presence of noise. However, the comparison of the results of 
the LLE estimation with the distribution of corresponding 
surrogate data LLEs demonstrated that the original time series 
LLE was placed close to an inconclusive 5% of surrogate 
LLEs distribution. This indicates that there might be a 
significant influence of noise on the data in the LLE 
calculation results, thus leaving open the question whether the 
calculated positive LLEs can be treated as an indicator of 
deterministic chaos in the data. 

Another calculated RQA measure is the average diagonal 
line length, L, which can be interpreted as the mean prediction 
time. As seen in Table 1, data predictability was recognized as 
relatively low, which is consistent with the results of the 
deterministic nonlinear prediction shown in Fig. 5. 
Additionally, high ENTR values seen in Table 1 indicated the 
high complexity of the system, as well as its low predictability 
[9, 14]. Taking into account the results of the surrogate data 
method application, a fast decrease in prediction quality with 
time is likely to be caused by the presence of noise in the 
experimental data.  

V. CONCLUSION 

This study aimed to investigate properties of WT mouse 

spontaneous pupillary fluctuation dynamics by the methods 

of nonlinear time series analysis. Results clearly indicated 

strong underlying determinism in the data, which, however, 

was altered in several datasets by a considerable amount of 

noise. As pupillometry dynamics of human subjects is 

recognized to be deterministic [1,2], we can assume 

determinism of spontaneous pupillary fluctuations regardless 

of species. The presence of determinism is essential for 

further applied studies on pupillary data. 

Additionally, predictability and trajectory divergence rates 

were also investigated. Although the obtained characteristics 

were similar to those of time series produced by chaotic 

dynamics, results of surrogate data method application 

indicated that the effect of noise in the data cannot be 

overlooked, and further careful investigation of WT mouse 

pupillometry data is required.   
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