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Abstract— Datasets in healthcare are plagued with
incomplete information. Imputation is a common method to
deal with missing data where the basic idea is to substitute
some reasonable guess for each missing value and then
continue with the analysis as if there were no missing data.
However unbiased predictions based on imputed datasets can
only be guaranteed when the missing mechanism is completely
independent of the observed or missing data. Often, this
promise is broken in healthcare dataset acquisition due to
unintentional errors or response bias of the interviewees. We
highlight this issue by studying extensively on an annual health
survey dataset on infant mortality prediction and provide
a systematic testing for such assumption. We identify such
biased features using an empirical approach and show the
impact of wrongful inclusion of these features on the predictive
performance.

Clinical relevance— We show that blind analysis along with
plug and play imputation of healthcare data is a potential
pitfall that clinicians and researchers want to avoid in finding
important markers of disease.

I. INTRODUCTION

Missing data is a ubiquitous problem in statistical analysis
or data science irrespective of the domain, be it social
sciences or health sciences. Most, if not all the machine
learning algorithms presume that all the information is
present for all the available features. Conventional techniques
of handling missing data include performing complete case
analysis which is deletion of missing cases but this strategy
results in lesser informative subset of the dataset.

Health data are being massively generated due to the ad-
vancement of both data acquisition and analysis technologies,
examples of which include time-series data from intensive
care units (ICU), biomarker data, electronic health records
(EHR), or health surveys. The global market for big data
in health care has been projected to grow significantly from
US$19.6 billion in 2018 to US$ 47.7 billion in 2022 [12].
Undoubtedly, this rise is due to the penetration of data
analytics for better predictive clinical outcomes, analyzing
disease, and tracking patterns thus increasing overall public
health. Modelling such large scale data and predicting the
health status for improvement of the patient is challenging.

1eMedia Lab and STADIUS, Department of Elec-
trical Engineering (ESAT), KU Leuven, Belgium.
<firstname>.<lastname>@kuleuven.be

2Philips Research, Eindhoven, The Netherlands
<firstname>.<lastname>@philips.com

3Department of Data Analysis and Mathematical Modelling, Ghent
University, Ghent, Belgium stijn.luca@ugent.be

∗These authors contributed equally to this work.

One such challenge is addressing missing values in data,
that arise, for example, from unrecorded data from ICU
machines due to lead detachment or respondents inten-
tional/unintentional non-responsiveness to health surveys [6].

Datasets (particularly in healthcare) are often preprocessed
by various imputation techniques that rely on the assumption
of independence between the missing mechanism and the
observed data. Statistical tests to verify this assumption often
fail when missing data is abundant and a subset of reasonable
size of complete data is absent [11].

In this article, we illustrate the common pitfall of blindly
applying imputation techniques that can lead to biased re-
sults. To this end, we utilize a publicly available dataset
from the annual health survey in India and show how state-
of-the art imputation techniques fall short in reliable feature
matrix completion for classification purposes. Furthermore,
we propose an empirical approach to study the effect of in-
cluding features that are strongly associated to the occurrence
of missing data.

A large part of existing literature on missing data analysis
that we discuss later studies one or more methods to impute
data. In this article, we highlight the biased effect that impu-
tation might have on the results of a predictive classification
model in the presence of imbalanced missingness across
different classes and we propose a method that can support
in preventing careless imputation of missing data.

The remainder of the paper is structured as follows. In
section II, we talk about the imputation techniques and types
of missingness. Further, we describe the dataset in section
III. Section IV elaborates upon the experiments performed
in order to show the impact of the described challenges with
unbiased missing values imputation. We conclude by giving
final remarks to the reader in section V.

II. RELATED WORK

Several approaches exist that handle missing data by (a)
deletion of the cases that have values missing for a single
variable, simply excluding such cases can be used to build
complete datasets [4] or (b) estimating a single set of missing
values by single imputation using statistical moments, k-
nearest neighbours or (c) a confidence interval imputation
by much more complex multiple imputation [13]. A specific
implementation of multiple imputation strategy known as
the Multivariate Imputation by Chained Equations (MICE)
involves multiple steps of imputation in which every variable
is imputed conditionally on all other variables [5]. Deletion
based imputation can lead to loss of statistical power and can
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introduce bias when a smaller complete subset is selected
from a non-complete dataset.

Based on the type of missingness, three basic mechanisms
are present [4], described as follows, Suppose we have
missing data on a variable Y and we have some other
variable X , then, one defines:

• Missing completely at random (MCAR) : If the proba-
bility of missing data on Y is unrelated to the value of
Y itself or to the values of any other variables in the
data set, the data is said to be MCAR.

• Missing at random (MAR): If the missingness de-
pends only on the data that are observed but not
on the missing components, the data are MAR. i.e.,
P (Y missing|Y,X) = P (Y missing|X)

• Not missing at random (NMAR): If the probability that
Y is missing depends on the unobserved value of Y
itself, then the mechanism is NMAR.

Most of the imputation strategies work under the assumption
that the missingness is MCAR [11]. Statistical tests like
Little’s test [11] exist that can test whether the data is
MCAR or not. However, in the absence of a small complete
subset (when missing data is abundant), it is difficult to
conduct such a test and existing imputation techniques tend
to fail in reliably predicting the missing values. Authors
in [8] and [7] discuss different imputation methods and
compare the performance of imputation techniques with
different amount of missingness on different datasets. They
advise that different missing data mechanism needs different
imputation strategy, however none of the previous works talk
about the imbalance in missingness that can be present in
different classes when considering a classification problem.
Imputation without analysis of such an imbalance can lead
to erroneous completion of the feature matrix which we will
show later.

In this article, we illustrate the challenges of using impu-
tation methods when the MCAR assumption is not met. For
this purpose, we use a case study from healthcare and we
propose an algorithm to study the effect of including features
that are strongly associated to the occurrence of missing data.

III. DATA
We chose a publicly available healthcare survey dataset

conducted over women that underwent pregnancy in several
states in India [1]. Child mortality remains a major challenge
in India and is responsible for approximately 39.1 deaths per
1,000 live births in 2017 [2]. Child mortality as a pregnancy
outcome is considered a major attribute in building efforts
to preventive antenatal care thus reducing infant mortality.
Poor pregnancy outcome in India is not just attributed in
defining the outcome but is also a consequence of substan-
dard health information systems. The National Institute for
Medical Statistics of the Indian Council of Medical Research
(ICMR - NIMS) has launched the National Data Quality
Forum (NQDF) in collaboration with the Population Council.
The purpose of the NQDF is establishing protocols and
good practices for betterment of data collection, storage and
dissemination [9]. Major barriers to the data quality include

(a) lack of comparability, (b) discordance between system
and survey level estimates, (c) lengthy questionnaires, (d)
questions related to socially restricted conversation topics, (e)
age-reporting errors or non-response, (f) intentional skipping
of questions, (g) under-reporting due to subjective question
interpretation and incompleteness, and (h) paucity of data to
generate reliable estimates on mortality [9]. We select data
from the open government platform in India where the Indian
government has provided open access to datasets, documents,
etc. for public use. This dataset is also collected as part
of a joint initiative between government of India and US
government. Authors in [14] have shown the risks of using
such open datasets from non-verified sources such as [3].
They identify that Woman Schedule Section 1 and Section
2 (called WPS dataset) is from a verified source [1]. A
number of 355 features in the WPS dataset [1] are present
in the form of questionnaire, with fields related to social,
economic, health status or demographic indicators as well as
the outcome of pregnancy (live or stillbirth).

Since the dataset consists of questions from surveys, some
questions are explicitly on the child birth outcome thus
making some of the features highly correlated with the
fact whether the child birth resulted in a live or stillbirth.
Hence, features such as baby weight taken or not, weight
measurement, immunization card details, different vaccines,
polio, hepatitis, vit. A, IFA tablet, feeding details, breastfed,
animal dairy, solid food month, etc. were removed to main-
tain causality of the labels with respect to the feature set
because these features can only be recorded if the pregnancy
outcome is positive. We then selected 233 features out of
355 as the final feature list for further analysis.

IV. THE CASE STUDY

Given a feature matrix X = {x1,x2, ...,xN}, x ∈ Rd

observed for N subjects, the objective is to learn a function
h : X → Y , where Y = {0, 1} corresponds to prediction
of still or live birth respectively. The class of stillbirth
also includes all cases of induced abortion and spontaneous
abortion. The number of cases for live birth are much more
than all the stillbirth cases. Hence, we look at the problem
of learning a model for binary classification of live and
stillbirth.

Imputation of the feature matrix occurs during pre-
processing before training the model, as shown in Figure
1.

Input Data Imputation

Model Training Prediction

Fig. 1: Typical processing pipeline for learning with missing
data.
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We compare the performance of the imputation approach
by keeping the processing pipeline fixed i.e the training
data and the classifier and its parameters are fixed and only
the imputation approach is varied. For our experiments, we
perform a 10-fold cross validation with minority class as
the positive class (stillbirth) and plot the average receiver
operating characteristic. Figure 2 shows that a random forest
classifier with single imputation methods like constant based
filling for imputation achieves the best performance. This
motivated us to look closely into the features and the
missingness in relation to the class label.
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Fig. 2: A simple zero based constant filling appears to
have the most predictive power (keeping classifier and its
parameters fixed) when the imputation methods are applied
blindly without understanding the type of missingnes.1

We take two exemplary features that are discrete-
valued categorical features namely “source of anc” and “ma-
ternity financial assistance”. In the annual health survey,
“source of anc” refers to the institution offering antenatal
care (ANC). 12 different government or private institutions
operating at different governance level are assigned real num-
bers. For example, women receiving antenatal care at gov-
ernment operated rural center called anganwadi are assigned
the real number ‘1’. Similarly, women receiving ANC from
private hospitals are assigned the value ‘9’. The complete
description of the domain space is mentioned in [1] and is
mapped to R in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 99}. For the
feature “maternity financial assistance”, women who took
financial assistance under the government scheme Janani
Suraksha Yojana (JSY) are assigned the value ‘1’ for this fea-
ture. If they avail any other government scheme, real number
‘2’ is assigned, ‘3’ for any other non-government scheme
and ‘4’ in case no financial assistance was availed. The
domain space for this feature is mapped in R to {1, 2, 3, 4}.
Figure. 3(a) and (b) represent the feature “source of anc”
and “maternity financial assistance” respectively. These two
features are representative for multiple features which have
a lot of missing values or are filled with zero in the

1Notice the difference in x and y coordinates as this is a zoomed-in
snippet of the AUROC curve to improve the visibility of the curves.

questionnaire, possibly due to errors in the interview. For
the sake of discrimination, we do not combine the missing
values and zero-entries even if they mean the same thing.
As can be observed from Figure. 3(a) 9.7% data is missing
in class “0” and 77.48% data is missing for class “1” for
the feature “source of anc”. Similarly from Figure. 3(b),
“maternity financial assistance” feature has around 0.187%
data missing for class “0” and 75.82% data is missing for
class “1”. This percentage imbalance in missing data will
be further irritated if we consider the occurrence of zero
in the data as ‘0’ is not in the domain space of most of the
features and was recorded maybe as a missing value. Suppose
we fill the missing data with a simple single imputation
approach, for example, a constant ‘c ∈ R’ or mean, for
feature “source of anc”, then for 77.48% of the data in
class ‘1’ the feature value will be c and the remaining
22.52% will take values somewhere in the domain of the
feature {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 99}. On the other
hand, only 9.7% of the data is missing for class ‘0’ and
will be assigned the value c. Rest of the class ‘0’ (90.263%)
will take values from the domain of the feature. Since class
“1” has more missing data than class “0”, constant-filling
based imputation methods will provide a false sense of
discriminatory power to the feature.
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Fig. 3: Exempelary features (a)“source of anc” and (b) “ma-
ternity financial assistance” with different classwise imbal-
ance in terms of availability of the data, Class 1 = live birth,
Class 0 = stillbirth

Figure. 4 represents a compact view of all the features
plotted with respect to availability of data in each class. All
the features that exhibit classwise-imbalance in availability
of feature data are shown in ∗. The line y = x in Figure 4
represents the features that have equal amounts of missing
data in each class (marked in ◦). The margins along the line
y = x represent the tolerance level (e.g. = 10% tolerance) for
visualising whether the feature is useful or not in the absence
of actual feature value. One way of finding out if the features
are missing completely at random is by performing Little’s
test [10]. We found on performing Little’s test that the data
is not missing completely at random.

We develop an empirical approach to evaluate the features
that exhibit such behaviour and use the algorithm provided
in Algorithm 1. The algorithm first, calculates the percentage
missing data in each class. If the difference in percentage of
the missing data calculated in the previous step differs by a
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Fig. 4: Each data point ( ∗, ◦) represents a feature with
x and y coordinates being the missing percentage in class
0 and 1 respectively. Each feature outside the tolerance
margins (marked as ∗) have high absolute percentage dif-
ference between the available class “0” and class “1”. As
depicted, features from Figure. 3(a and b) are also apparently
intolerable features

pre-decided tolerable limit, then we say that the feature is
a tolerable feature with respect to the imbalance in missing
data, otherwise, it is an intolerable feature. For example, as
can be observed from Figure 3a and b, both the features have
an absolute difference of > 60 which is greater than a pre-
decided tolerance limit of 10, decided empirically. Hence,
both the features are intolerable and have false discriminatory
power for model-learning if used with imputation.
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Fig. 5: Classification performance with zero, mean-filling
and MICE based imputation when tolerance threshold varies
from [10, 30, 50] and the area under the ROC curve
represented upto two decimal places.

We test with different values of tolerance thresholds to
test the variation of performance if such erroneous features
are included in model-building blindly. Figure. 5 represents

Algorithm 1 Finding features inside tolerable range

1: procedure FIND TOLERABLE FEATURES
2: Input : X = {x1,x2, ...,xN}, x ∈ Rd, Y = {0, 1}
3: Parameter : perThresh ∈ [0, 100] . tolerance (in

%)
4: mis0 = 0 . Initiate missing count for class 0
5: mis1 = 0 . Initiate missing count for class 1
6: tolerableFeatInd = []
7: for i = 1 : d do
8: f0 = xi(Y == 0)
9: f1 = xi(Y == 1)

10: for j = 1 : length(f0) do
11: if isnan(f0(j)) then
12: mis0 = mis0 + 1

13: for j = 1 : length(f1) do
14: if isnan(f1(j)) then
15: mis1 = mis1 + 1

16: misPer0 = 100 ∗mis0/length(f0)
17: missPer1 = 100 ∗mis1/length(f1)
18: absDiffMiss = abs(missPer0−missPer1)
19: if (absDiffMiss < perThresh) then
20: tolerableFeatInd = [tolerableFeatInd, i]

the classification of live-stillbirth prediction performance
with different imputation strategies and different tolerance
thresholds (margin as depicted in Figure. 3) as described
in algorithm 1. A number of 86, 90 and 117 features were
selected based on tolerance thresholds 10, 30 and 50 respec-
tively. Figure 5 shows that we get much higher performance
when the tolerance threshold is set high. This is due to the
fact that at high tolerance threshold we include more features
that are biased because of the imbalance in missingness in
different classes. However, when the tolerance threshold is
as low as 10, we include less biased features (depicted as
◦ in Figure 4). Here, the final performance achieved with
tolerance level 10 is around 0.68. We also observe that at the
threshold of 10, where minimum number of biased features
are included, the state-of-the-art MICE approach performs
better than the constant-filling approaches.

In this work in progress, we try to showcase the effect
of selecting different thresholds for tolerance selection on
a dataset from healthcare. In the future, we would like to
work on finding an optimal strategy to find this threshold
and test our approach on different datasets with more than
two classes.

V. CONCLUSION

This paper reflects on the need for caution when imputing
missing values for classification. The assumptions such as
MCAR or MAR are not always easy to verify. Most of the
state-of-the-art imputation techniques work well when data is
MCAR and a subset of complete data is present for guiding
the imputation process. We showed the effect of imputation
on the performance by studying a case in healthcare. It was
evident from our experiments that attention was needed when
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features were used with missing values that are strongly
associated with the class label and including these in a
predictive model can lead to a false sense of discriminatory
power. In the future, we would like to develop methods to
find the tolerance threshold and fill the missing data in an
unbiased manner.
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