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Abstract— Studying the animal models of human neuropsy-
chiatric disorders can facilitate the understanding of mecha-
nisms of symptoms both physiologically and genetically. Pre-
vious studies have shown that ultrasonic vocalisations (USVs)
of mice might be efficient markers to distinguish the wild type
group and the model of autism spectrum disorder (mASD).
Nevertheless, in-depth analysis of these ‘silence’ sounds by
leveraging the power of advanced computer audition technolo-
gies (e. g., deep learning) is limited. To this end, we propose
a pilot study on using a large-scale pre-trained audio neural
network to extract high-level representations from the USVs
of mice for the task on detection of mASD. Experiments have
shown a best result reaching an unweighted average recall of
79.2 % for the binary classification task in a rigorous subject-
independent scenario. To the best of our knowledge, this is the
first time to analyse the sounds that cannot be heard by human
beings for the detection of mASD mice. The novel findings can
be significant to motivate future works with according means
on studying animal models of human patients.

I. INTRODUCTION

Autism spectrum disorder (ASD), aka autism spectrum
condition (ASC), is considered as a developmental brain
disease [1], [2], which is a common and heterogeneous
neuropsychiatric disorder that involves deficit in social in-
teraction, speech and nonverbal communication, repetitive
behaviour or restricted interest [3]. Autism is thought to be a
kind of heritable neuropsychiatric disorder [4], which means
the genetic factors contribute significantly to its etiology [5].
Based on the conserved human/mouse linkage, previous
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studies [6], [7] had generated the mice with a 6.3 Mb du-
plication of mouse chromosome 7, which was mirroring the
human chromosome 15q11-13 duplication (known to be the
most frequent cytogenetic abnormality in autism [8]). More
interestingly, it was observed that, abnormal vocalisations
were found in the model ASD (mASD) mice displaying poor
social interaction and behavioural inflexibility [6].

On the one hand, computer audition (CA) and its re-
lated audio signal processing and machine learning (ML)
and/or deep learning (DL) technologies have been increas-
ingly applied to the field of healthcare [9], e. g., snore
sound [10], heart sound [11], and even the ongoing COVID-
19 pandemic [12]. On the other hand, according studies on
analysing the sounds that cannot be heard by human beings,
e. g., ultrasonic vocalisations (USVs) generated by mice,
are extremely limited. Specifically, recent studies using CA
based methods for analysing the USVs of mice were focusing
on human annotated simple behaviours (e. g., courtship [13])
or gender distinction [14]. In contrast, using USVs to detect
mASD mice is lacking. Motivated by the previous successful
achievements in analysing human speech for ASD detection
as a task [15]–[17], we introduce and explore the capacity of
advanced CA methods for detection of mASD mice in this
pilot study.

The main contributions of this work can be summarised
as: First, to the best of our knowledge, it is the first study on
using CA for analysing USVs of mice for the detection of
mASD. Second, we introduce novel large scale pre-trained
deep convolutional neural network models to the field of
mice USVs. The models were pre-trained by a large-scale
audio data set, rather than the widely used image data for
a better fit. Third, we observe that, the CA based method
appears available to analyse mental diseases biologically.
Last but not least, we demonstrate that, the models trained by
audible data (that can be heard by humans), are still effective
to extract high-level representations from non-audible data
(that cannot be heard by humans). The remainder of this
paper will be organised as follows: We firstly introduce
the related work by giving a brief literature review. Then,
Section III describes the data and methods used in this
study. Subsequently, the experimental results are shown in
Section IV followed by a discussion in Section V. Finally,
this work is concluded in Section VI.

II. RELATED WORK

It is worth noting that, in the recent five years, leveraging
the state-of-the-art ML/DL methods for analysing mice’s
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USVs has increasingly attracted efforts from a broad com-
munity of neuroscience, psychiatry, and computer science.
A simple task on distinguishing two types, i. e., “part of
a call” or “not part of a call” was presented in [18]. The
authors claimed that their proposed wavelet transformation
based scalograms can be superior to the traditional Fourier
transformation (FT) based spectrograms in modelling a
mouse’s pitch perception [18]. Coffey et al. introduced a
deep learning paradigm called DeepSqueak, to classify mice
volcalisations into five categories: Split, Inverted U, Short
Rise, Wave, and Step [19]. In their study, the cutting-edge
regional convolutional neural network architecture (Faster-
RCNN) [20] was used, which was shown to be effective for
nuanced explorations of the interplay between vocalisations
and behaviours, even in noisy environmental conditions [19].
Vogel et al. studied the classic ML paradigm, which used
human hand-crafted acoustic features and ML models for
classifying nine types of mice USVs, i. e., complex, two
components, upward, downward, chevron, short, composite,
frequency step, and flat [21]. They indicated that, a random
forest outperformed a support vector machine, which can
achieve a promising result of approximately 85.0 % classifi-
cation accuracy [21]. Moreover, Ivanenko et al. investigated
the capacity of a deep neural network (DNN) for classifying
sex and strain from the mice USVs [14]. They claimed
that, a sufficient nonlinear combination of features extracted
from the spectrograms of the mice USVs can facilitate the
classification of emitter’s sex and/or strain. Sangiamo et
al. combined the sound source localisation technology with
the ML/DL based classification system to analyse the mice
behaviour types in [13]. They found a clear pattern linking
particular social behaviours and vocal communication in
male mice [13]. A study on learning the dictionary of the
mice USVs were proposed in [22]. The authors proposed
a hybrid approach between sparse subspace clustering and
more traditional clustering techniques, and found that the
subspace similarity is a better similarity than cosine similar-
ity to compare USVs [22].

However, the existing studies aforementioned cannot an-
swer the question on if CA based methods can be feasible for
detection of the mASD mice. To this end, we conduct this
pilot study on using advanced DL models to extract high-
level representations from the USVs of mice. Furthermore,
we use this paradigm to classify the groups of the wild type
(WT) control and the mASD.

III. MATERIALS AND METHODS

A. Data Collection and Protocols

The detailed data collection protocol can be found in [7].
The mice USVs data collection environment is briefly il-
lustrated in Fig. 1. Each pup was separated from its dam
and placed into a plastic tray at P 8 (postnatal day 8) and
P 12 (postnatal day 12). The microphone (416 H, Avisoft
Bioacoustics) was located 10 cm above the bottom of the
field (see Fig. 1). The recording time was set to 5 min at
a sampling rate of 300 kHz. After recording on P8, each
pup was labelled by tattoo in tail, which used non-toxic

Fig. 1. An overview of the mice USVs data collection. The source of this
figure is from [23]. Permission was received from Elsevier.

(a) mASD

(b) WT

Fig. 2. The example spectrograms of the USVs generated from the model
mice of ASD and the mice of wild type (WT) control.

ink to identify each mouse. The investigators were blind
to the genotypes of the mice. Totally, we have collected
168 recordings of USVs. Among of these recordings, 88 are
labelled as ‘WT’, and 80 are labelled as ‘mASD’.

The spectrograms can be achieved via the short-time
Fourier transformation (STFT) [24], which are widely used
to analyse audio data in the time-frequency domain. Fig. 2
illustrates examples of spectrograms of the USVs generated
from the mASD mice and the WT mice.

B. Deep Transfer Learning Models

The general framework of the proposed method is depicted
in Fig. 3. Kong et al. proposed novel deep transfer learning
pre-trained models, the large-scale pre-trained audio neural
networks for audio pattern recognition (PANNs) [25], which
were validated successfully in our previous CA for healthcare
(CA4H) applications of heart sound classification [26] and
speech under facial mask detection task [27]. PANNs were
pre-trained by the large-scale Audio Set [28], instead of
the up-to-now conventionally used image data, which makes

69

                                                                                                                                               



Spectrogram (frequency × time)

Standardization

PANNs

pat or WT

PANNs

Batch normalize

Conv block

Dropout 0.2

× 6
FC

Dropout 0.5
FC and Softmax

Fig. 3. The proposed framework for detection of mASD from the USVs
of mice. Firstly, the original USVs are transformed into spectrograms based
by STFT. Then, the pre-trained DL model, i. e., PANNs (CNN 14) [25] are
used to extract high-level representations from the data. Finally, a softmax
layer is used to make predictions on the data as mASD or WT.

them more suitable to extract high-level representations from
the USVs.

One of the structures of PANNs, called CNN 14, is
composed of 6 layers of convolutional blocks and 2 fully
connected layers. A convolutional block has 2 layers of
3×3 convolutional filters, a batch normalisation layer, and
a Rectified Linear Unit (ReLU), followed by 2×2 pooling
layers. Input layer and output layer are changed accordingly
to fit USV data and label.

The loss function for fine-tuning PANNs’ CNN 14 is
binary cross-entropy or log loss which is defined as:

LogLoss =−1
n

n

∑
i=1

[yi log ŷi +(1− yi) log(1− ŷi)] , (1)

where n is the number of instances, ŷi is the predicted
probability of genetically modified mouse type, yi is 1
(mASD) or 0 (WT).

C. Evaluation Metrics

Considering the data imbalance between mASD and WT
mice, we use the unweighted average recall (UAR) [29],
i. e., the averaged recall of the two classes, as the main
evaluation metric. In addition, the widely used accuracy,
i. e., weighted average recall (WAR), sensitivity (Sens.),
specificity (Spec.), precision (Prec.), and F1 measure (F1) are
used as complementary metrics for evaluating the proposed
model’s performance.

IV. EXPERIMENTAL RESULTS

A. Setup

We use Python based scripts via PyTorch (Version–1.5.1)
to run all the experiments in this study. All the original USVs
are transformed to spectrograms via STFT. The original long
USVs recordings (duration: 5 minutes) are chunked into
shorter clips with a duration of 30 seconds and an overlap
of 15 seconds between the neighbouring segments. We use
a 5-fold cross validation strategy to train and validate the
models. The final results are the averaged values of 5 times
independent experiments: In each experiment, four folds of
the segmented instances are used to train the model while
the remaining fold of the segmented instances is used to
validate the model. In order to avoid over-optimistic results,
a rigorous subject-independent method is applied to the fold

66.6 66.5 68.7
64.5 63.8 66.1

79.2 79.2 81.2
77.2 76.5 78.5
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Fig. 4. The evaluation metrics (in [%]) of the experimental results for both
the segment level and the subject level based instances. All the results are
averaged values of a 5-fold cross validation.

TABLE I
CONFUSION MATRICES (NORMALISED: IN [%]) OF THE TWO

CONSIDERED METHODS (SEGMENT LEVEL VS SUBJECT LEVEL). ALL OF

THE INSTANCES ARE INCLUDED BY EXCLUDING EACH SUBJECT WITHIN

A 5-FOLD SUBJECT-INDEPENDENT CROSS-VALIDATION. MASD: MODEL

AUTISM SPECTRUM DISORDER; WT: WILD TYPE.

(a) Segment Level

Pred -> WT mASD

WT 64.6 35.4
mASD 31.3 68.7

(b) Subject Level

Pred -> WT mASD

WT 77.3 22.7
mASD 18.8 81.2

partitioning. For the final validation, we use two methods,
i. e., segment level and subject level. For segment level
validation, the final predictions are based on the segment
based instances. In contrast, for subject level validation, the
final predictions are made based on a majority voting of the
segment level instances belonging to one certain subject. All
the extracted high-level representations are standardised to
eliminate the effects of outliers.

B. Results

The evaluation metrics (in [%]) are shown in Fig. 4. We
can see that, all the results based on the subject level strategy
are better than the counterparts via segment level strategy.
When looking at the UARs, both of the two strategies (66.6 %
vs 79.3 %) have shown an effective capacity in the detection
of mASD, i. e., much higher than the according chance level
of 50.0 % UAR for two classes. The normalised confusion
matrices are given in Table I. It is found that, majority voting
can improve the recalls for both mASD and WT USVs.
Specifically, the recall of WT can be improved from 68.7 %
to 81.2 %, which lends the model a higher specificity (see
Fig. 4).

V. DISCUSSION

As a first study on using CA technologies to analyse
the USVs for detection of model mice with ASD, we
demonstrate that, the models pre-trained by audible data can
also be used for extracting high-level representations from
non-audible data, particularly for a healthcare related task.
The experimental results are encouraging and promising.
Furthermore, a majority voting strategy can significantly
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(p < .001 in a one-tailed Student’s t-test [30]) improve
the final performance of the model. The sensitivity can
reach a high result surpassing 80.0 % (see Fig. 4), which
is already comparable or even better than the previous study
on analysing human speech for ASD detection [17].

The limitations and perspectives of this pilot study are:
First, the explainability of the proposed DL models is lack-
ing. In a next step, one needs to explore the visualisation of
learnt features from the USVs data by the DL models, which
will be benefiting the understanding of the mechanisms why
and how the models work well for the considered mASD
mice detection task. Second, we will investigate and compare
different topologies of the pre-trained models in the USVs
analysis work. Moreover, a combination (fusion) of the
models might improve the performance of the models. Third,
traditional human hand-crafted features carrying important
information about the pathological vocalisations should be
studied for comparison in this context. One should also study
how to combine the state-of-the-art DL methods with the
classic ML models to achieve better results. Finally, we need
to note that, the whole spectrum of the USVs are used in
this study. Namely, some audible events (e. g., the movement
sounds of the mice) might be included in the analysed data.
Future work can be done by excluding these parts of the
USVs data.

VI. CONCLUSION

In this study, we investigated using advanced CA based
methods for analysing USVs of mice, particularly for the
task of mASD detection. The novel PANNs were firstly
introduced into the field of mice USVs analysis and demon-
strated to be efficient to reach a UAR of 79.2 % in a rigorous
subject-independent scenario for the detection of model mice
of ASD. This promising result shows that, DL models can
extract high-level representations from the sounds beyond
human hearing capacity, and these features can be useful
for detecting vocalisations of the model ASD mice sharing
biological/genetic backgrounds with the human patients.
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