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Abstract— The motion ability of patients in the acute phase

of stroke is difficult to define with existing indexes such as the

Brunnstrom stage. Hence, for designing a novel evaluation index

for stroke rehabilitation in the acute phase, we focused on the

differences between the skin deformations in active and passive

movements. Skin deformation reflects the activities of body

tissues that are related to motion ability. We measured skin

deformations on the upper arm in active and passive movements

during elbow flexion and extension and extracted features from

these deformations. For practical rehabilitation applications, we

developed a novel flexible distance sensor array to reduce the

time needed for attaching sensors to patients. Using principal

component analysis (PCA), the skin deformation could be

decomposed into joint movements and activeness of movements

as the first two components (PC1 and PC2). The joint angle and

PC1 exhibited a high correlation, and the standard deviation

(SD) of PC2 indicated a significant difference in the types of

movements. From the above results, we concluded that the SD

ratio between PC2 and PC1 may be used to evaluate motion

ability considering the inherent biomechanical characteristics.

I. INTRODUCTION

Intervention to patients in the acute phase after stroke
onset influences the positive effects of motion ability re-
covery [1]. The motion ability of the patient in the acute
phase is difficult to define with existing indexes such as the
Brunnstrom stage (Brs [2]), as these indexes are determined
via discrete evaluations of whether the patient can perform
a certain motion. Thus, if we could develop a novel index
for the continuous ability recovery of patients (in the acute
phase), we could improve the recovery process based on the
index.

To design the abovementioned novel evaluation index,
we focused on skin deformation. Skin deformation mea-
surements are similar to mechanomyogram and force myo-
gram [3]–[5] measurements and reflect the activities of body
tissues (muscles, bones, and tendons) related to motion
ability. One interesting aspect is that such types of skin
deformation can be observed during active and passive move-
ments [6]. Skin deformation reflects not only the voluntary
activities of body tissues but also the inherent biomechanical
characteristics. The index for continuous ability recovery
can be extracted while considering individual differences in
skin deformation using biomechanical characteristics. As a
therapist often teaches a motion to a patient using passive
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Fig. 1: Assumed rehabilitation scheme.

movements, it is unnecessary to perform any additional op-
erations for indexing during rehabilitation. The rehabilitation
scheme that we assumed is shown in Fig. 1. A therapist
passively moves the arm of the patient. Next, the patient
moves his/her arm (active movement). The therapist could
compare the features of both movements and evaluate his/her
current motion ability.

For designing the novel index for rehabilitation evalua-
tion as described above, we analyzed the skin deformation
differences between active and passive movements. This
study investigated the skin deformation on the upper arm
with a developed flexible distance sensor array during elbow
flexion-extension in active and passive movements involving
healthy participants. When a person performs single-axis
motions, the features of these movements can be decomposed
into joint movements and activeness of movements. We
assumed that muscle bulge is the sum of muscle deforma-
tions caused by joint movements and muscle contractions
caused by voluntary movements (activeness of movements).
The active movements contain both muscle deformation
and muscle contractions. To extract these features, we used
principal component analysis (PCA). Using PCA, the skin
deformation was compressed into a two-dimensional feature
with the first two components (PC1 and PC2). We determined
the differences between both movements in the principal
component space. The first principal feature was mainly
related to the joint movements, and the second one could
be related to the activeness of the movements.
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Fig. 2: Structure of flexible distance sensor array.

II. METHODS

A. Measurement of Skin Deformation

In our previous study [7], we developed a distance sensor
array to measure skin deformation on the upper arm. This
array is fabricated from a rigid material to measure deforma-
tion stably and has a size adjustment mechanism for adapting
to different arms sizes. However, fine adjustment of the array
takes a long time. During a preliminary attempt to measure
the skin deformation, therapists pointed out time becomes a
burden on the patient and therapist.

In this study, we developed a novel flexible distance sensor
array. As shown in Fig. 2, this flexible array consists of
distance sensor units, mounts, and flexible connectors. The
distance sensor unit that converts deformation to voltage was
developed in one of our previous studies [8]. In this study,
we used eight units. As the skins of some patients are sen-
sitive to friction compared to healthy persons, an ellipsoidal
contact plate was used to reduce the pressure on the skin. The
mount is fabricated from a rigid material, and it has two holes
for inserting the flexible connectors. The connector is made
from thermoplastic polyurethane (TPU), which is a flexible
material. To insert the cylindrical connector into the holes of
the mount, each mount is connected. The extension of the
connector is approximately 6 mm. Using the extension, the
size of the array is adjusted to match the arm size of the
user.

Owing to the different arm sizes of users, we fabri-
cated flexible connectors of various sizes. By replacing the
connector, the array can be used on arms with various
sizes. Considering the size variations, we used connectors
of two sizes (S and M) in this study. The lengths of S
and M between the cylindrical connectors were 15.5 and
20.5 mm, respectively. If the appropriate connector size is
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Fig. 3: Measurement setup used for the experiments.

determined in advance, the array can be attached to the arm
in approximately one minute. We chose the sizes to ensure
that users did not feel excessive pressure and the array did
not shift during movements. As a guide for size selection, the
S connector was used for arm circumferences of 25 to 26.8
cm, and the M connector was used for arm circumferences
of 28.5 to 29.2 cm, in this study.

B. Comparing Features in Active and Passive Movements

The skin deformation measured with the flexible distance
sensor array was presented as an eight-dimensional feature
(outputs of eight units). To extract the features from the
overall skin deformation, we use PCA to compress the
deformation data.

After compression using PCA, the correlation coefficient
(CC) and standard deviation (SD) were used to analyze
the relationship between the features and movements. For
example, a component related to joint movement can be
used to determine the CC between joint movements and each
principal component. If the CC is high, the component is
related to joint movements. If the CC is low, the component
is not/weakly related to joint movements.

We hypothesized that when the activeness of movements
increases, the muscle contractions caused by voluntary move-
ments increase. Thus, the active movement deviates from
the passive movement. If this deviation shows a similar
tendency independent of the array users in the PCA space,
we can design the evaluation index by quantifying the
deviation along a certain direction. We intend to investigate
the correctness of the above hypothesis and the extent of the
deviation.

III. EXPERIMENTS

To confirm the difference in skin deformation between ac-
tive and passive movements, we performed skin deformation
measurement experiments.

A. Setup

Fig. 3 shows the setup used for the experiment. In this
experiment, we focused on elbow flexion and extension on
a table, involving simple single-axis motions. These motions
can be performed by patients facing difficulties in performing
anti-gravity movements. The array was set on the maximum
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Fig. 4: Example of the measured skin deformation at 40
bpm (participant D). Red line represents active movement
and green line represents passive movement.

bulge of the biceps brachii when participants flexed their
arms. The signals from the array were acquired with an A/D
converter (USB-6218, National Instruments). To compare
skin deformation and joint movements, we also recorded
the joint angles with a motion capture system (v120 Duo,
Optitrack). The elbow joint angle was calculated from three
makers attached to the wrist, elbow, and shoulder. The signals
from the array and the motion capture data were measured
at 120 Hz. By inputting the trigger signal of the motion
capture system to the A/D converter, the start times of both
data recordings were synchronized.

The participants sat in a chair placed in front of a table
and placed their elbows near the edge of the table. By
changing the height of the table, the elbow and shoulder
positions of the participants were adjusted at almost the same
height. If the height differs significantly, then the motions
would include elbow flexion/extension and unintentional
internal/external shoulder rotations. The participants were
instructed to maintain constant elbow and shoulder positions
as much as possible. To reduce the friction between the skin
and table, the participants wore a support on the elbow, and
a cloth was placed under their hands.

B. Conditions

We performed the experiments with five healthy partic-
ipants A to E (four males in their 20s and one female in
her 40s, all the participants are right-handed). The experi-
mental protocol of this study was approved by the research
ethics board of Nara Institute of Science and Technology.
Informed consent was obtained from the participants before
participation in the experiments.

We collected the data for active and passive movements.
In the active movements, the participants flexed and extended
their elbows by themselves on the table. In the passive
movements, an experimenter held their forearms and moved
them to flex and extend their elbows, as in the active
movement. In the passive movements case, the participants
were asked to relax as much as possible. The motion range of
passive movements is smaller than that of active movements

(a) Relationship between joint
angle and PC1 (A)

(b) Relationship between joint
angle and PC2 (A)

(c) Relationship between joint
angle and PC1 (D)

(d) Relationship between joint
angle and PC2 (D)

Fig. 5: Relationships between angle and PC1/PC2. Red dot
represents active movements and green dot represents passive
movements. Upper row contains data of participant A, and
lower row contains data of participant D.

(the maximum difference was approximately 20 degrees).
The motion speed was controlled by three metronome

speeds: 20, 30, and 40 beats per minute (bpm). For each
speed, we collected the data for one minute. The numbers
of flexions and extensions were 10, 15, and 20, respectively.

We used data pertaining to continuous stable 30 s from the
measurements conducted for 60 s in each trial. Because there
was a sudden outlier value, we used data of two continuous
stable 15 s for one person’s one trial. Fig. 4 shows an
example of the measured array data (eight channels) in both
movements. The red and green lines represent data for active
and passive movements, respectively; ch. 1 is set on the
biceps brachii, and the order of the channels is clockwise
from the shoulder side. In both movements, continuous defor-
mations can be observed. Compared to passive movements,
the active movement data indicate varieties of deformations.

The PCA matrix was calculated using the data recorded
under all conditions (two movements and three motion
speeds) for each participant. We analyzed the data of the first
and second components, as the sum of contribution rates for
the first two components (PC1 and PC2) was 0.95 or higher
in all participants.

IV. RESULTS AND DISCUSSION

Fig. 5 shows the relationship between the PCA-
compressed features and the joint angles at a speed of 40
bpm for two participants (A and D). The red and green
dots represent the data of active and passive movements,
respectively. The differences in the movements could be
found from the relationship between the joint angles and
PC2. Compared to active movements, the deviation of the
data for passive movements was small.
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Fig. 6: Correlation coefficient between joint angle and
PC1/PC2. AM denotes active movement, and PM denotes
passive movement.

Fig. 7: Standard deviation of PC1 and PC2. The SD data
were scaled using the joint angle range. AM represents active
movement, and PM represents passive movement.

Fig. 6 shows the CC (absolute value) between joint angles,
and PC1 and PC2. The mean of CC in all movements and
speeds was 0.97 for PC1 and 0.60 for PC2. In PC1, the SD
of the CC was small for all participants. These results prove
that PC1 is mainly related to joint movements.

Fig. 7 shows the SD of each component. To remove the
difference in motion range, the SD data were scaled using the
joint angle range under each condition. To confirm the SD
differences, we performed an analysis of variance with two
types of movements and three speeds. In PC1, movements
and speeds have interaction (F (2, 8) = 8.843, p < 0.01). The
simple main effect between speeds and passive movement
showed a significant difference (F (2, 16) = 5.679, p < 0.05)
and that between movements and a speed of 40 bpm showed
a significant difference (F (1, 12) = 9.563, p < 0.01).
According to the results obtained using Ryan’s method [9],
40 bpm showed a significant difference (p < 0.05) compared
to the other two speeds in passive movements. Considering
that PC1 is highly correlated with the joint angle, the speed of
the movement affected the difference in the joint movement.

In PC2, movements and speeds showed no interaction
(F (2, 8) = 0.368, p > 0.1), and the main effect indi-
cated significant differences in the speeds and movements

Fig. 8: Ratio of standard deviation between PC2 and PC1.
AM denotes active movement, and PM denotes passive
movement.

(F (2, 8) = 5.415, p < 0.05) and (F (1, 4) = 9.561, p <
0.05). The results obtained using Ryan’s method indicated no
significant difference between each speed. In PC2, although
speed effects were evident, the differences in the features
reflected the differences in the types of movements. These
results proved that differences between active and passive
movements are found in PC2.

Fig. 8 shows the SD ratio between PC2 and PC1. The
ratio of active movements is higher than that of the passive
movements. In these experiments, we used a motion capture
system to measure joint angles. However, it is difficult to
use a motion capture system during actual rehabilitation
as the setup needs time and occlusion of the markers will
happen. Using the ratio, we could normalize the activeness
of movements by considering the SD of PC1, which is highly
related to joint movement. Further, we could evaluate motion
ability and provide feedback through comparisons with a
baseline for passive movements. The SD ratio at 30 bpm
shows significant differences (p < 0.05) between active and
passive movements based on the paired t-test. This indicates
that controlling the movement speed is one of the important
factors influencing stable observations of the activeness of
movements.

In the previous studies, an electromyogram (EMG) had
been used to observe the motion ability [10], [11]. Because
the signal of the EMG is generated by voluntary muscle con-
traction, the EMG could not obtain during passive movement.
Observation of active movements from a baseline of passive
movement is an advantage and uniqueness of the proposed
index based on skin deformation.

In short, the key finding of this study is that the differ-
ence in the skin deformations between active and passive
movements can serve as an index of the motion ability
of users. The activeness of movements can be determined
from skin deformation without additional steps in the current
rehabilitation procedure.
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V. CONCLUSIONS

In this study, we analyzed the skin deformation on the
upper arm in active and passive movements during elbow
flexion and extension. For practical rehabilitation applica-
tions, we developed a novel flexible distance sensor array
to reduce the time needed for attaching sensors to patients.
From the experimental results, we confirmed that the dif-
ferences in the skin deformations during active and passive
movements could be observed in the PC space. PC1 is mainly
related to joint movements, and PC2 is related to the types of
movements. Using PCA-compressed features, such as the SD
ratio between PC2 and PC1, we could obtain an evaluation
index that reflects the motion ability of patients considering
the inherent biomechanical characteristics.

In the future, we will try to apply this method on actual
patients to analyze the differences between healthy persons
and patients. We intend to establish relationships between
the proposed and existing indexes.
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