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Abstract— Neuroimaging studies often involve the collection
of multiple data modalities. These modalities contain both
shared and mutually exclusive information about the brain.
This work aims at finding a scalable and interpretable method
to fuse the information of multiple neuroimaging modalities
using a variational autoencoder (VAE). To provide an initial
assessment, this work evaluates the representations that are
learned using a schizophrenia classification task. A support
vector machine trained on the representations achieves an
area under the curve for the classifier’s receiver operating
characteristic (ROC-AUC) of 0.8610. –

Clinical relevance – This work helps examine the complex
interplay between multiple neuroimaging modalities and how
that interplay affects mental disorders.

I. INTRODUCTION

Multimodal neuroimaging data is abundantly available
and although approaches that seek to combine these data,
e.g., JointICA [1], and more recently multimodal subspace
analysis [2] focus on linear decompositions, recent work on
multimodal deep learning offers the benefits of additional
flexibility which can also capture nonlinear relationships.
Multimodal deep learning research mostly focuses on the
relationship between audio, images, and/or text [3]. The
exciting new direction of multimodal representation learning,
together with growing evidence that deep learning represen-
tations can provide robust biomarkers [4], paves the way for
multimodal representation learning in neuroimaging.

Just as with a puzzle, pieces that fit together will contain
both shared information and mutually exclusive information.
Fusing these pieces in terms of neuroimaging can lead to
biomarkers that more robustly predict changes associated
with mental illnesses [5]. An important downside to deep
learning techniques is that their non-linear nature can present
challenges to interpretation, which undermines their applica-
bility to medical problems. Interpretability is, therefore, an
important consideration in this work.

Recent work in multimodal deep learning applied to neu-
roimaging has focused on information maximization between
representations extracted from two modalities [6], [7] or by
translating between modalities [8]. This work aims to learn a
continuous manifold of multiple modalities so that they are
represented in a locally Euclidean space. The model archi-
tecture that is used is a variational autoencoder (VAE) [9],
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which maximizes a lower bound on the log-likelihood of the
data’s marginal distribution. Other work on multimodal VAEs
focuses on a factorization of shared and private subspaces
[10] and uses a separate encoder for each modality. In this
work, we intentionally force all of the modalities to inhabit
the same shared subspace by using a single encoder-decoder
pair for all modalities. This allows us to interpolate between
modalities, similar to how VAEs have previously been used
to interpolate between different digits in the MNIST dataset
[9].

To provide an initial assessment of the potential for the
unsupervised training of the VAE to produce robust biomark-
ers for complex mental illnesses, we evaluate our model
and its representations on a schizophrenia classification task.
Schizophrenia is a mental illness that is characterized by
complex interconnected changes in dynamics and functional
connectivity. To understand how the brains of patients with
schizophrenia differ from controls it is imperative to piece
together information from multiple modalities [5], such as
structural MRI and functional MRI. In this work, we treat
a structural MRI (sMRI) volume and each of the intrinsic
functional brain networks that are extracted from resting-
state functional MRI (rs-fMRI) data using NeuroMark [11]
as separate modalities. An important consideration when
choosing our method was that a VAE can decode locations
in its latent space to brain space and provide insight as to
what regions in the brain may differ between two groups.
The regions that have in previous literature been linked
to schizophrenia include the thalamus, cerebellum, caudate,
superior temporal gyrus, most of the visual system (e.g.,
lingual gyrus, occipital gyrus [12]), and the supplementary
motor area [13].

II. CONTRIBUTIONS

This work introduces an interpretable approach for fusing
multiple neuroimaging modalities with the following prop-
erties:

• It focuses on fusing multiple modalities and it scales in
its number of parameters as O(1) with the number of
modalities.

• The model optimizes both an encoder and a decoder, the
decoder makes it easier to interpret group differences in
the latent space, because locations can be decoded back
into brain space.

• The framework forces the modalities to be represented
in a shared locally Euclidean space, instead of learning
two spaces and maximizing their similarity. This allows
us to interpolate directly between multiple modalities.
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III. METHOD

A. Problem setting

Let {Mi = {xi,j , ..., xi,N}}i=1,...,n be a set of modalities
with N samples per modality and n modalities. Sample index
j corresponds to a subject and each subject will have a
sample for each modality. Instead of learning each modality
with a separate decoder, we enforce a shared subspace.
Further, to make this approach scalable to a large number of
modalities and because we already use a shared decoder, we
also only use one encoder for all modalities. This forces the
features that are learned for each modality to be similar and
makes sure the model scales well in terms of memory usage.
Further, given that neuroimaging datasets are considered
small compared to more commonly used deep learning
datasets, using multiple encoders may lead to overfitting.
The encoder decoder couple is optimized with respect to the
log-likelihood of the marginal distribution of M and each
volume is treated as an independent sample. The integral over
the marginal distribution of M , pθ(x) =

∫
pθ(z)pθ(x|z)dz

is intractable. We therefore optimize the following evidence
lower bound (ELBO) using a variational autoencoder (VAE)
[9]:

log pθ(xi,j) ≥ L(θ, φ;xi,j)
= Eqφ(z|x) [− log qφ(z|x) + log pθ(x, z)]

= −DKL(qφ(z|xi,j) || pθ(z))
+ Eqφ(z|xi,j) [log pθ(xi,j |z)]

(1)

The objective function is calculated as a sum over each
data point and can be split up into three parts, the first part
is an encoder qφ(z|xi,j) parameterized as a convolutional
neural network (CNN) with parameters φ that estimates the
latent variable z. The second part is a decoder pθ(xi,j |z), also
parameterized as a CNN with parameters θ, that reconstructs
the original sample xi,j from the estimated latent variable
z. The last part of the loss is the KL-divergence between
a prior of our choosing pθ(z), which we choose to be a
diagonal multivariate Gaussian centered at 0 with a standard
deviation of 1, and the estimated latent variable z. The latent
variable z is sampled from a multivariate Gaussian as well,
which in turn is parameterized by a mean µ and variance σ
that is estimated by the encoder.

B. Classification

To evaluate whether the fusion of modalities in the VAE’s
latent space leads to robust biomarkers, we set up a classi-
fication task. The model is first trained using 10-fold cross-
validation, where each fold of subjects is used as a test
set once and the other 9 folds are used to train on. The
validation set is randomly selected as a stratified 10% of
the subjects in the training set. After training the VAE in
an unsupervised manner, the weights in the VAE are frozen.
The complete dataset is then embedded using the encoder
qφ(z|xi,j), where instead of sampling z from its estimated
multivariate Gaussian, we use the estimated mean µ as our
latent variable z. This is to make sure there is no stochasticity

in the inference process. The representations of the training
and validation sets are stacked and used as input for a
machine learning model, this model is then evaluated using
the test set representations, as follows.

The estimated latent variable z can be interpreted as a
low-dimensional representation of a volume, with a dimen-
sionality l. Given that each subject has n different modalities,
each subject will also have n representations z1, ..., n. These
representations can be concatenated for a subject to create
a feature vector with a size of n× l. The subject-by-feature
matrix can be used as input for a classifier. In this case, we
train a support vector machine (SVM)

to predict whether subjects in a held-out test set are
patients with schizophrenia. Given that each modality is
represented using l features, we can extract the feature
importance for all nl features and then sum the features
for each modality, to get feature importance for each of the
n modalities. The feature importance information helps us
understand how brain changes related to schizophrenia are
jointly represented in multiple modalities.

The SVM classifier is evaluated by calculating the area
under the curve (AUC) of their receiver operator character-
istic (ROC). Given that the VAE is trained in an unsupervised
manner and that parts of the training process are stochastic,
we evaluate the model for 5 different seeds to make sure the
method is robust to its seed, these experiments are performed
with a latent dimensionality of 128. To evaluate the effect
of the number of latent dimensions on the classification
performance, we set the seed to be 42 and trained the
model with four different latent dimensionalities 128, 256,
512, 1024. We select the weights obtained during the first
training fold for the model that performs the best. The best
performance is determined by averaging the ROC-AUC over
the 10 folds for each model. These encoder and decoder
weights are used to create the figures and to determine
the importance of each modality for the classification of
schizophrenia.

C. Data

The datasets used in this study are FBIRN, B-SNIP, and
COBRE, each dataset was processed using NeuroMark [11]
to obtain 53 independent component networks (ICNs). These
53 ICNs, together with a structural MRI scan for each subject
are considered to be separate modalities, so n = 54. The
sMRI data is preprocessed using SPM 12 in a Matlab 2016
environment. The data is then segmented into gray matter
volume (GMV) with the help of a modulated algorithm, the
GMV is then smoothed with a 6mm FWHM Gaussian kernel.
Each ICN is a volume with 53-by-63-by-52 voxels, the sMRI
volumes are resized to that same size using Scipy [14]. The
values in each volume are then rescaled to [-1, 1] by dividing
the values in a volume by their maximum, which is also
sometimes referred to as maximum absolute scaling. The
dataloader and transformations were implemented with the
help of TorchIO [15].



D. Implementation

The batches are constructed by loading the 53 ICN vol-
umes and an sMRI volume for a subject and concatenating
them into a batch. Each volume is considered to be sampled
independently during training, the reason the volumes are
loaded per subject however is to minimize disk accesses. The
ICNs for one subject are all saved in one file, so loading all of
them into a batch leads to a smaller number of disk accesses
and reduces training time. Further, because each modality is
equally present in a mini-batch for which an optimizer step
is performed, the loss calculated over each batch is balanced
for the modalities.

The code for the model, inference, and training was
implemented using PyTorch [16], Catalyst [17], and NumPy
[18]. The VAE uses a convolutional encoder and decoder
pair, each of the layers uses a 3-voxel kernel, a stride of 2
and 1-voxel padding. The channel sizes in the encoder are
1 → 64, 64 → 128, 128 → 256, 256 → 512 and 512 →
256, 256 → 128, 128 → 64, 64 → 32, 32 → 16, 16 → 1 in
the decoder, the last layer in the decoder uses stride 1 and
no bias parameters. Each convolutional layer uses a ReLU
[19] as its activation function, except for the last layer in
the decoder, which uses a hyperbolic tangent function to
map the output between [-1, 1] to match the input range.
The last convolutional layer in the encoder produces an
output with shape: 4-by-4-by-4 and 256 channels, this output
is flattened and mapped to the mean µ and variance σ,
which are used to construct a diagonal multivariate Gaussian
from which z is sampled. To make sure the VAE is fully
differentiable, we use the reparameterization trick to train
it [9]. The classification evaluations in the latent space are
implemented using RAPIDS AI [20] to make sure highly
parallelizable computations are performed on the GPU and to
minimize costly CPU→GPU and GPU→CPU data transfers.
The experiments were performed on an NVIDIA DGX-1
V100.

E. Latent structure

Most of the modalities that are used in this paper are
intrinsic networks, which are obtained through independent
component analysis (ICA). The independence in the spatial
volumes for those components leads to a latent space that
clusters modalities, which is shown in Figure 1. The plot
depicts a T-SNE projection of a 512-dimensional space that
preserves the latent structure in a 2D image. Interestingly, the
ICNs that belong to the same domain are generally clustered
together, such as ICNs in the cerebellum. It is also clear from
Figure 1 that the sMRI cluster is located relatively farther
away from the other modalities in the latent space. The ICNs
are all localized spatial ICA maps, whereas the sMRI volume
represents all of the structures in the brain. There is more
inter-subject variance to be modeled for the sMRI volumes
than for the spatially localized ICNs which likely contributes
to the sMRI cluster being further away from the latent space
ICN clusters.

Fig. 1. A T-SNE projection of the modality clusters in the latent space,
each number indicates a different modality starting at 0. Each color indicates
the domain that the intrinsic networks belong to. Each subject is represented
by 54 points in this plot, one for each modality.

IV. RESULTS

A. Classification

The average ROC-AUC for the five models trained with
a latent dimensionality of 128 and multiple different seeds
is 0.8374, with a standard deviation of 0.0026. This shows
that the model robustly learns a latent space, where patients
with schizophrenia and controls are linearly separable.

The experiment involving an increasing number of latent
dimensions shows that the ROC-AUC increases with the
number of latent dimensions up to a certain point. The
ROC-AUC is 0.8354 for 128 dimensions, 0.8569 for 256
dimensions, 0.8610 for 512 dimensions and 0.8540 for
1024 dimensions. These results show that the model is not
learning to represent each modality using a single latent
dimension, but rather that the variance that is modeled across
a latent dimension is shared among multiple modalities or
that multiple latent dimensions are used to model a single
modality.

The best model, seed = 42 and 512 latent dimensions
were used to calculate the feature importance for each modal-
ity. The 10 modalities with the highest feature importance
are shown in Figure 2, where the rightmost modality is the
most important and the leftmost modality is the 10th most
important. sMRI shows the lowest performance in terms of
feature importance. This is likely due to the trade-off in the
loss function for the VAE. The KL-divergence pulls the latent
variables closer to a zero-mean unit-norm Gaussian, while
the reconstruction loss tries to make sure every modality is
reconstructed correctly. The number of different modalities
and the KL-divergence likely limit variance that can be
modeled to represent the sMRI volumes. The variations that
are modeled for sMRI do not help linearly separate patients
from controls.

Fig. 2. The top 10 most important modalities, with their names on the
x-axis and the importance that the SVM assigns to them (that sums to 1) on
the y-axis. The plot shows the standard deviation over each of the 10-CV
folds as a vertical line for each modality.



The group differences that the VAE has learned can be
interpreted by visualizing the group centers in the latent
space. Group centers can be calculated for each modality
by averaging the locations of subjects within that group.
The latent center for SZ patients can then be decoded and
subtracted from the decoded latent center for HC to show the
group differences. The differences of the top five most impor-
tant features from Figure 2 are calculated, then thresholded at
the 99th quantile highest values for each modality, and then
summed to create Figure 3. The figure compares the learned
differences with the voxelwise differences of the spatial
ICA components that correspond to the five most important
modalities. The results are remarkably similar, which proofs
that VAEs yield interpretable results in their latent space.
As future work fuses modalities more, the results will likely
differ more from the voxelwise differences.

ICA voxel-wise group differences

VAE decoded group differences

Fig. 3. The differences between SZ and HC for the VAE are calculated by
decoding the SZ patients’ latent space center and the HC’s latent space
center for the top five most important modalities. The SZ volumes are
subtracted from the HC volumes, the differences are thresholded at the 99
quantile highest values, and summed over the modalities. The procedure is
the same for the spatial ICA components, without the latent decoding

V. CONCLUSION

When the number of modalities increases for multimodal
learning, it may not be feasible or optimal to learn a separate
encoder-decoder pair for each modality. This is especially
true for small datasets that models may easily overfit on
due to overparameterization. This work takes the approach
of joint multimodal representation learning by modeling
the marginal distribution of all the modalities together. The
VAE learns subspaces in the latent space that can linearly
separate HC from patients with SZ. The VAE framework is
easy to generalize to more modalities, although modalities
like functional connectivity will require some engineering
because the network expects a 53x52x63 volume as input
right now.

VI. FUTURE WORK

The independence of spatial ICA components is reflected
in the latent space of our model, which leads us to believe
that unprocessed volumes may be an important direction
for fusing modality representations. Another way to tackle
this problem is to enforce additional losses in the latent
space or create an inductive bias in the architecture of the
model. Furthermore, computing joint features (early fusion)
and using those as inputs for the model may also increase
multimodal fusion in the latent space.
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