
  

  

Abstract— Objective: A current biomedical engineering 

challenge is the development of a system that allows fluid control 

of multi-functional prosthetic devices through a human-machine 

interface. Here we probe this challenge by studying two subjects 

with trans-radial limb loss as they control a virtual hand and 

wrist system using 6 or 8 chronically implanted intramuscular 

electromyographic (iEMG) signals. The subjects successfully 

controlled a 4, 5, and 6 Degrees of Freedom (DoF’s) virtual hand 

and wrist systems to perform a target matching task.  Approach: 

Two control systems were evaluated where one tied EMG 

features directly to movement directions (Direct Control) and 

the other method determines user intent in the context of prior 

training data (Linear Interpolation). Main Results: Subjects 

successfully matched most targets with both controllers but 

differences were seen as the complexity of the virtual limb 

system increased. The Direct Control method encountered 

difficulty due to crosstalk at higher DoF’s. The Linear 

Interpolation method reduced crosstalk effects and 

outperformed Direct Control at higher DoF’s. This work also 

studied the use of the Postural Control Algorithm to control the 

hand postures simultaneously with wrist degrees of freedom. 

Significance: This work presents preliminary evidence that the 

PC algorithm can be used in conjunction with wrist control, that 

Direct Control with iEMG signals allows stable 4-DoF control, 

and that EMG pre-processing using the Linear Interpolation 

method can improve performance at 5 and 6-DoF’s. 

Clinical Relevance— This work demonstrates a novel method 

of providing simultaneous control of a 6 DoF virtual wrist and 

hand prosthesis. 

I. INTRODUCTION 

A significant short-coming in the field of upper limb 

prosthetics is the lack of a human-machine interface (HMI) 

capable of providing users with dexterous and simultaneous 

control over all Degrees of Freedom (DoF) provided by state-

of-the-art prosthetic limbs [1].  Such systems include many 

independently controllable DoF’s including multi-functional 

prosthetic hands [2] and wrists [3]. In clinical settings multi-

DoF systems are often controlled by adjusting each DoF 
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sequentially. Sequential prosthesis motion is burdensome and 

slow compared to the simultaneous and natural motion 

provided by intact limbs [4]. Simultaneous motion can be 

enabled by improving the number and independence of 

control signals decoded from user activity or by developing 

controllers that decipher and command simultaneous 

movement.  

 

Clinical prosthetic systems are typically controlled by body-

powered interfaces or by myoelectric devices that decode user 

intent from surface electromyography (sEMG) [4]. Prior work 

with sEMG has shown some simultaneous control, but 

typically does not exceed three Degrees of Actuation (DoA) 

[5]–[10]. Here, DoA will refer to the dimensionality of the 

control signal sent to the prosthetic device. This is partially 

caused by the simultaneously recording activity from several 

muscles when using sEMG which complicates the process of 

decoding user intent. Implanted EMG shows reduced muscle 

‘crosstalk’ [11], and can be collected with implantable 

myoelectric sensors [12]–[16] and regenerative peripheral 

nerve interfaces (RPNI, [17], [18]). Intramuscular EMG is 

presently suggested to be a preferred method for recording 

EMG for myoelectric control strategies [15], [19]–[21], and 

recently demonstrated simultaneous 4-DoA velocity control 

with chronically implanted EMG (iEMG) [16].   

 

Movement simultaneity can also be increased by coupling 

prosthesis DoF (e.g. controlling grasps rather than joints). 

This allows a low-DoA controller to command a high-DoF 

device Here, DoF refers to the number of independent 

actuators within the electromechanical system.   Prosthesis 

DoF can be coupled through the Postural Control  (PC) 

Algorithm [22]–[25] and other methods [26], [27]. The PC 

algorithm was previously shown to work in 2-DoA / 4-DoF 

cases using sEMG with Direct Control [25], [28]. In Direct 
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Control (DC), EMG sites are directly mapped to DoF 

directions after filtering, gains, and thresholds are applied. A 

DC-PC system does not force movement into discrete states 

or require extensive training procedures while allowing linear 

combinations of hand grasps to be reached in a proportional 

manner. To date, the advantages of such a system have just 

begun to be explored in take home studies [28]. 

 

In this study we examine three hypotheses in a velocity-

control target-matching task with two subjects implanted with 

iEMG electrodes. First, we extend on past work that evaluated 

a 2-DoA/4-DoF DC-PC sEMG system [23], [24]  by 

examining performance in iEMG systems ranging in 

complexity from 2-DoA/4-DoF to 4-DoA/6-DoF. We 

hypothesize that (1) iEMG systems will allow more complex 

control than past sEMG systems and that (2) performance will 

degrade as the number of DoA controlled increases even for 

iEMG based controllers. Second, we explore pre-processing 

techniques for improving control signal independence. In 

particular, we hypothesize that (3) the 4-DoA Linear 

Interpolation (LI) controller can combine with the PC 

algorithm to create a 4-DoA/6-DoF LI-PC iEMG system that 

will be superior to the DC-PC iEMG system. 

II. METHODS 

A. Research Subjects 

Two subjects with unilateral trans-radial limb loss 

participated in this study. Subject S8, the deidentified label 

for the subject, was previously implanted with 8 pairs of 

iEMG [29] electrodes interfacing with pronator teres (P), 

flexor carpi radialis (FCR), flexor digitorum superficialis 

(FDS), flexor carpi ulnaris (FCU), supinator (S), extensor 

carpi radialis longus (ECRL), extensor digitorum (ED), and 

extensor carpi ulnaris (ECU). Surgery details describing this 

implant type are provided by Dewald et al [15]. Subject S6 

had similar implants, excluding the pronator teres and ECU. 

Both subjects had substantial experience with prior 

experiments using myoelectric control algorithms. All clinical 

research was performed under approved IRB protocol (IRB # 

16050-H37) from the Louis Stokes Cleveland Department of 

Veterans Affairs Medical Center and under an active Food and 

Drug Administration (FDA) Investigational Device 

Exemption (IDE), G110043. 

B. Target Matching Task 

Virtual Reality (VR) target matching tasks are used as a 
proxy measurement for prosthesis Activity-of-Daily-Living 
(ADL) capabilities as VR task and ADL performance are well-
correlated [30]. At its core, target matching tasks are a 
modified Fitts Law task [31] which describes a user’s ability 
to control an actuator system. During experiments, subjects 
were seated at a 1m distance from a computer screen and 
iEMG was sampled through a Ripple Grapevine Neural 
Interface Processor system with 15-350Hz band-pass filters at 
2kHz (Fig. 1). Only the mean-absolute-value (mABS) iEMG 
feature was extracted using a 200ms window, updated every 
50ms. The screen presented users with target postures using 
the VR display [15].  The VR display shows two hands with 

movable joints, one of which is a target and the other of which 
is under the user’s control. The user is also presented with a 
display of the Postural Control domain [24], with a red ‘X’ 
marking the target hand grasp. Both displays are controlled 
with a custom Simulink model. The user can move the 
controllable hand using an EMG decoder. This hand’s position 
is also marked with a green ‘O’ in the Postural Control domain. 
To match a target, the user must guide the VR hand so that 
every DoA is within a 15% range-of-motion window of the 
target posture and then remain in that window for a continuous 
second. The task has a 30 second time limit. 

C. Target Sets 

Target sets were built separately for 2, 3, and 4-DoA tasks.  

The 2-DoA targets only contained hand grasps where the 1) 

index finger, 2) middle-ring-little fingers, 3) thumb, and 4) 

thumb abduction are varied to create functional postures 

matching the capabilities of the DEKA prosthetic limb, a 4-

DoF task.  The 3-DoA targets included 2-DoA hand grasps 

and either the flexion/extension or pronation/supination of the 

wrist, a 5-DoF task.  The 4-DoA targets included 2-DoA hand 

grasps, wrist flexion/extension, and pronation/supination, a 6-

DoF task. These postures mimic the capabilities of the DEKA 

prosthesis. Subjects were given as much rest time as they 

wanted between batches. Targets were built to evenly sample 

the acquisition of grasps, wrist positions, and both 

simultaneously, as previously described [16]. Grasp targets 

were at the end of range-of-motion; wrist position targets 

were either at a default orientation (full supination and slight 

wrist flexion, allowing maximal view of the grasp), or set 

randomly. Targets were interleaved with returns to a neutral 

posture. The DoA which were not evaluated were manually 

locked to the neutral hand orientation.  

D. Experimental Design 

Hypotheses were evaluated in two experiments. Experiment 

One evaluated only the DC-PC iEMG system with both 

subjects. The second experiment evaluated both DC-PC and 

LI-PC iEMG systems with Subject S8. Both experiments 

evaluated performance in target-matching tasks in 2, 3, and 4-

DoA cases. S6 4-DoA cases were not conducted due to an 

insufficient number of iEMG channels. 

 
Figure 1– Experimental testing setup including subject with chronically-
implanted EMG sensors, data acquisition system, and virtual prosthetic 

hand interface. 
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E. Experiment One (DC-PC only) 

Experiment One uses the DC-PC system (Fig. 2 top) which 

maps a small number of DoA to hand postures requiring many 

DoF.  Past DC-PC work directly mapped sEMG signals to 

cursor movement directions on a 2-dimensional domain. 

Cursor location determined the hand grasp by interpolating 

pre-set grasps. In this study, iEMG signals were used and the 

edges of the PC domain corresponded to the grasps of the 

DEKA prosthesis, with the domain center corresponding to a 

neutral hand posture (Fig. 2). These postures are created by 

combining 4-DoF (index finger, coupled middle/ring/little 

fingers, thumb flexion/extension; and thumb ab/adduction). 

The PC algorithm thus maps a 2-D cursor location, modulated 

by a 2-DoA controller, to 4-DoF hand postures. Rather than 

having the 2-DoA feedforward controller output simply 

correspond to cursor X/Y coordinate transformations, a more 

intuitive mapping was chosen. Four cursor movement 

directions were set: three directions, 120 degrees apart, led to 

the Tip Prehension, Palmar Prehension, and Lateral 

Prehension grasps; the fourth ‘direction’ returned the grasp to 

a neutral hand posture. These directions were tuned to 

correspond, generally, to the user moving their phantom limb 

in a ‘Radial Deviation - R’, ‘Hand Close - C’, ‘Ulnar 

Deviation - U’, and ‘Hand Open - O’ directions, respectively. 

 

Direct Control (DC) maps four EMG mABS features to the 

four cursor movement directions in the PC domain after 

applying gains and thresholds.  Wrist DoA’s are controlled 

using remaining mABS features in an agonist-antagonist 

mapping. Gains, thresholds, and the mapping between iEMG 

channels and movement directions were set manually for 

every test set.  

 

Targets for Experiment One included ten total target sets 

collected over two sessions per subject. All target sets were 

built for the 4-DoA case, included 70 targets/set, and varied 

between sessions. DoF’s which were not in use were simply 

‘locked’ to a neutral posture, allowing many targets to be 

matched without movement. Of the 700 total targets, 596 

were valid and the remaining 104 were excluded from 

analysis as they could be matched without movement. 

F. Experiment Two (DC-PC and LI-PC) 

Experiment Two uses both the DC-PC system and the LI-PC 

system (Fig. 2 bottom). Table 1 shows iEMG-DoA mapping 

for each DC-PC session in Experiment Two.  The mapping 

was determined by using the most physiologically 

appropriate available muscle site for each DoA.  The Linear 

Interpolation  feedforward controller (LI) uses EMG signals 

to predict a user’s intended control signal and is described in 

past work [16]. Briefly, LI is constructed first by limiting 

EMG from sampled user movements to steady state and 

identifying the pattern of EMG activity for each movement. 

These patterns are then normalized to fall on a single 

hyperplane. A triangulated irregular network on this 

hyperplane is then created by treating the normalized EMG 

patterns as vertices and using Delaunay triangulation. These 

steps effectively partition EMG feature space into regions 

emanating from the origin where each region is bounded by 

N EMG patterns, where N is the number of EMG channels. 

Online user signals are decoded by linear interpolation on this 

triangulated network: the partition that the signal appears in 

is identified and the movements that bound the partition are 

linearly interpolated to determine the user’s movement. 

Whereas typical pattern recognition algorithms only allow 

 

 
Figure 2–Diagram of the DC-PC and LI-PC algorithms. mABS features 

are extracted from ciEMG and mapped using DC or LI to estimate user’s 
intended movements in wrist Radial/Ulnar (R,U) deviation, hand 

Open/Close (O,C), wrist Pronation/Supination (P,S), and wrist 

Flexion/Extension (F,E) directions. These measures of intent then control 
the virtual prosthesis: the PC algorithm sets the hand grasp and wrist DoF 

are controlled in an agonist-antagonist manner (DC) or directly (LI). 
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TABLE I.  MAPPING OF ciEMG TO MOVEMENT DIRECTION 

IN EXPERIMENT TWO 
Movement 

Direction 
Muscle Used 

(U) Lateral  

Prehension 
ECU ECU ECU ECU 

(R) Tip 

Prehension 
ECRL ECRL FCR FCR 

(C) Palmar 

Prehension 
FCU FCU FCU FCU 

(O) Hand 
Open 

ED ED ED ED 

Wrist 

Extension 
  ECRL ECRL 

Wrist  
Flexion 

  Pronator Pronator 

Pronation  Pronator  FDS 

Supination  Supinator  Supinator 

 2-DoA 
3-DoA 

P/S 

3-DoA 

F/E 
4-DoA 
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movements in pre-defined directions, LI simultaneously sets 

the direction and speed of the prosthesis and has been shown 

to allow simultaneous, proportional, and continuous control 

of up to 4-DoA. Training movements included all single and 

paired DoF that involved wrist pronation/supination, 

flexion/extension, radial/ulnar deviation, and a hand 

open/close DoF. The same VR set used in evaluation was 

used for training data collection. Training data was collected 

9 months prior to the real-time evaluation within this study 

and provided stable performance over months of time [16]. 

User intent corresponding to Radial/Ulnar deviation and 

Hand Open/Close movements is passed to the PC algorithm 

to determine hand movement. Decoded wrist command 

signals control the virtual prosthetic’s wrist directly. The LI-

PC controller was built separately for each experimental DoA 

condition. Experiment Two involved only Subject S8 and 

used 2, 3, and 4-DoA target sets. Targets were presented in 4 

batches of 15 for a total of 60 targets, except the 6 DoA case 

which included 3 batches of 16 and 1 batch of 14, for 62 total 

targets. Errors in manually ‘locking’ unused DoA invalidated 

11 of 488 evaluated targets by either making them un-

reachable or reachable without movement. These 11 targets 

were excluded from evaluation and did not affect study 

results given their small number. 

G. Metrics and Statistics 

Four outcome measures were used to describe the subjects’ 

performances.  Match Rate (MR, %) is the percentage of 

targets matched.  Time-To-Target (TT, seconds) is the 

average time needed to match a target posture, excluding the 

one-second dwell time.  Path Efficiency (PE, %) measures the 

directness of the path taken in DoF-space to reach the target 

posture.  As an example, a 33% PE indicates that the virtual 

hand traveled three times further than a straight-line path to 

the target. User Exertion (UE, sec*V/V) measures the effort 

required by the subject to achieve the target. This is found by 

normalizing iEMG features to the peak values observed in the 

training data for the LI controller (a self-selected ‘medium 

level of effort’) and integrating these values over the time 

needed to match each target [23].  These metrics describe the 

utility (MR, TT) and burden (PE, UE) of the controller and 

are a proxy for the performance with a prosthetic limb system.  

 

Statistical analyses were performed at α = 0.05 using Matlab 

(The MathWorks Inc., Natick, Massachusetts). For 

Experiment One, S6 TT and PE were compared with unpaired 

t-tests. S8 TT/PE were compared with a one-way ANOVA 

followed by unpaired t-tests. MR for S6 and S8 was compared 

with a Fisher’s exact test. Bonferonni corrections were 

applied within each metric and session. For Experiment Two, 

LI-PC and DC-PC TT/PE/UE were compared with paired t-

tests and MR were compared with Fisher’s exact test. As 

results are expected to be highly correlated, Bonferonni 

corrections were not applied. The 3-DoA cases were further 

compared post-hoc with unpaired t-tests and fisher’s exact 

test with Bonferonni corrections.  

III. RESULTS 

A. Real-time, simultaneous, and proportional 6-DoF 

control 

We verified during the 4-DoA sessions that the subject could 

control the 6-DoF virtual hand and wrist system in a 

simultaneous fashion using both control algorithms. EMG 

signals indicated concurrent activity, and the paths in joint 

space indicated simultaneous, proportional movement. The 

subjects were not constrained to drive the DoFs in a 

sequential.  Their behavior showed simultaneous, 

proportional control of all 4-DoA’s during the tasks.  The 

ability to control all DoA’s in a simultaneous manner, rather 

than sequential, is an advancement in the control of high 

degree of freedom prosthetic devices.  

B. DC-PC performance decreases as DoA increase 

Results from Experiment One are shown in Fig. 3. Results 

 
 Figure 3. Experiment One. DC-PC evaluations with both subjects, two 

days per subject. DoA conditions are split by session and presented 

chronologically.  Identical targets are presented across DoA conditions and 
unused DoF’s are simply locked. Values are shown as mean and 95% CI. 

* denotes significant difference. 
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from both subjects across two sequential experimental days 

are presented.  Substantial reductions in MR, TT, and PE 

performance were observed as DoA increased. In no cases did 

a performance metric substantially improve as DoA 

increased.  The TT and PE metrics showed significant 

differences between the 2, 3, and 4-DoA tasks across nearly 

all subjects and experimental days.  These results highlight 

that both subjects could achieve 4-DoA, 6-DoF control using 

the DC-PC algorithm but with diminishing ability compared 

to the lower DoA tasks.  

C. LI-PC improves metrics versus DC-PC at higher DoA 

The results of Experiment Two depict the comparison of DC-

PC and LI-PC (Fig. 4). In comparing DC-PC and LI-PC, 

performance differed significantly in MP, TT, and UE for the 

3-DoA F/E and 4-DoA cases.  These findings indicate that 

user command signal decoding can improve the DC-PC 

system using with iEMG. In particular, the LI-PC controller 

is more effective (MP, TT) and less burdensome (UE) than 

DC-PC at higher DoA.  The benefit of the LI-PC controller is 

consistently seen across the higher DoA results for MR and 

TT metrics which indicate the improved utility of the LI-PC 

compared to the DC-PC.  Furthermore, the dramatic reduction 

in UE during the higher DoA tasks demonstrates the reduction 

in burden on the subject to control the limb in a simultaneous 

fashion.  The lack of difference between the two control 

strategies at lower DoA implies that iEMG signals can be 

readily interfaced with existing direct control strategies for 

prosthetic limb systems with 2 or fewer DoA’s.   

 

D. Further analysis of 3 DoA P/S and F/E trials 

The 3-DoA F/E and P/S cases were further analyzed due to 

the curious fact that the complexity was equal, but the 

performance was significantly different when controlling the 

F/S DoA compared to the P/S DoA (Fig. 4, red). The DC-PC 

3 DoA F/E case had significantly worse MP, TT, and UE than 

all other 3-DoA cases and worse PE than both 3-DoA P/S 

cases. To further investigate 3-DoA cases, a correlation 

analysis was performed across decoded command signals; 

these are shown in heat-maps in Fig. 5 for all 3-DoA cases. 

High correlation coefficients (dark cells in Fig. 5) indicate 

that prosthesis command signals are correlated which could 

inhibit target matching. The DC-PC 3-DoE F/E case (Fig. 5a) 

had more highly correlated control output signals than other 

3-DoA controllers (Fig. 5b-d). LI-PC cases have lower 

decoded command signal correlation than DC-PC cases.  We 

hypothesize that the more highly correlated F/E command 

signals caused a reduction in performance compared to the 

P/S trials.  The reduction of correlation across command 

signals is critical for high DoA control when using iEMG or 

sEMG and is achieved more readily with the LI-PC controller. 

IV. DISCUSSION 

A. Progress on Postural Control for High DoA Systems 

The PC algorithm was previously shown to provide benefit in 

the control of multi-functional prosthetic hands when using 

multiple grasps [22]–[25].  This work describes the first use 

of the PC algorithm with iEMG. It also presents the first case 

where the PC algorithm was used in a 4-DoA HMI that 

included simultaneous control of grasps, wrist 

pronation/supination and wrist flexion/extension in a virtual 

limb system.  This work demonstrates Postural Control to be 

a viable post-processing step for arbitrary decoding methods, 

   
Figure 4. DC-PC and LI-PC systems with ciEMG were compared with 

subject S8. The figure presents 2-DoA, 3-DoA PS, 3-DoA FE, and 4-DoA 
conditions.  Only targets achievable by each DoA condition are presented 

in each condition and vary across experimental conditions. Values shown 

as mean with 95% CI. Black asterisks denote significance in pairwise 
comparisons (Results: C); red asterisks denote significance in further un-

paired post-hoc comparisons of 3-DoA cases (Results: D) 

6228



  

which hypothetically allows any machine learning approach 

to control grasps rather than individual DoF. This is valuable 

in the context of enabling better clinical use of complex 

prosthetic limbs such as the Luke Arm from DEKA Research 

and Development Corporation.  

B. iEMG Enables High-DoF Direct Control with Little 

Tuning 

One surprising finding in this study was that subject S8 

achieved good 4-DoA / 6-DoF control with the DC-PC 

system.  Past work has shown that direct control can allow up 

to 2-DoA control with fine-wire EMG recordings in a position 

control manner [19].  Indeed, DC is expected to be limited to 

2-DoA as there are believed to be at most four independent 

surface EMG sites on a residual limb [32] and using 

additional sites provides no benefit due to extensive crosstalk 

[33]. Machine learning is the usual method for increasing 

control to 3-DoA sEMG classifiers [8]. iEMG provides 

additional independent EMG sites, increases signal 

specificity, and reduces co-activity [15] [20], [21], [34]. 

Leveraging iEMG has allowed the development of 

simultaneous, continuous, and proportional 3-DoA and 4-

DoA controllers. However, these controllers still use subject 

training data for regression [20], k-nearest-neighbor [34], or 

interpolation [16] methods. It is therefore promising to 

observe 4-DoA simultaneous, continuous, and proportional 

control arising from direct control with iEMG after only a 

short tuning period.  

 

Compared to past work, using iEMG appears to improve 

control both in low and high DoA cases. For example, the 

Path Efficiency of the 2-DoA virtual hand in this study was 

89% with the LI-PC system and 82% with DC-PC. This is 

greater than previous work involving the 2-DoA hand 

engaging 3, 4, and 12-sites of surface EMG which allowed a 

69% PE [24].  Intramuscular EMG thus seems to improve 

subjects’ ability to complete this experimental task in an 

efficient manner and reduce the burden on the subject. 

C. Front-end processing of iEMG augments control 

Study results indicate that the DC-PC interface is sufficient 

for some degree of 4-DoA/6-DoF control; nonetheless, 

performance improved in LI-PC cases in conditions that 

involved wrist flexion/extension. This was coupled with a 

reduction in user command signal correlation and substantial 

reductions in user exertion. These results imply that there is 

benefit in using front-end processing of the iEMG signals to 

improve independence of the iEMG signals and thereby 

improve prosthetic control. This is not surprising, as 

following motor synergy theory [35] users are expected to 

intuitively command muscles in groups rather than 

independently.  In result, co-activity across EMG signals will 

be present even when using iEMG.  These findings are 

significant as the field of upper limb prosthetic control 

develops implantable technology that will still be recording 

co-activity across EMG sites.  A front-end processing 

algorithm like the LI presented here will be beneficial to 

maintain command signal independence.   

D. Study Limitations 

This study has limitations across both the controllers tested 

and study design.  First, the PC algorithm is not an intuitive 

mapping of the iEMG control signals to the DoFs of the 

virtual limb. The algorithm can map arbitrary signals (e.g. 

EMG channels in the DC case, decoded intent the LI case) to 

hand grasps. However, the movements users make with their 

phantom limb will not inherently line up with the grasp 

changes undertaken by the prosthesis. Fortunately, it appears 

that these mappings can be learned rapidly.  The study design 

has several constraints that limit the generalization of the 

results. The number of subjects involved was limited to two. 

To our knowledge, only two subjects have the implanted 

hardware necessary to participate in the study and both were 

involved. This is not unusual for case series involving 

hardware implanted under an Investigation Device 

Exemption. Furthermore, effort was made to collect a large 

volume of data totaling over a thousand virtual tasks 

measured. The volume of data ensures statistically relevant 

comparisons among the small number of subjects.  The data 

was collected over a limited period due to constraints on 

subject time. Most results (Results Sections C-D) involved 

only one subject during one session. However, the exploration 

of Direct Control with PC space involved two subjects, with 

two sessions each spaced several months apart (Results 

Sections A-B).  The drawbacks of chronically implanted EMG 

include intensive surgical procedures and recovery time, 

longitudinal observations to monitor infection, and the risk of 

device failure. 

 
Figure 5– Correlations in decoded user command signals were identified 

for each 3-DoA case in Experiment Two. F – Wrist Flexion; E – Wrist 

Extension; R – Wrist Radial Deviation (Tip Prehension grasp); U – 
Ulnar Deviation (Lateral Prehension grasp); C – Hand Close (Palmar 

Prehension Grasp); O – Hand Open (No Grasp); P – Wrist Pronation; S 

– Wrist Supination. Note: Dark colors show highly correlated user 

command signals which inhibit independent DoA control. 

A

C

B

D
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