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Abstract— The hCoV-19 virus is continuously evolving to
highly infectious and lethal variants. There is a latent risk
that current vaccines will not be effective over these novel
variants. This entails comprehending the genome-wide viral
information to unveil mutagenic mechanisms of hCoV-19. To
date, this virus is studied as a collection of non-related variants,
making it challenging to forecast hotspots and their upcoming
effects. In this work, we explore genome-wide information to
disentangle informational mechanisms that lead to insights into
viral mutagenicity. Towards this aim, we modeled informational
compartments based on a topic-free-alignment workflow. These
compartments illustrate that hCoV-19 has a complex informa-
tional architecture that addresses high-level virus phenomena,
i.e., mutagenicity. This new framework represents the first
step towards identifying the virus mutagenicity leading to the
development of all-variants-effective vaccines.

I. INTRODUCTION
The human coronavirus (hCoV-19) outbreak began in

Wuhan, China, by the end of 2019, reaching the pandemic
status on March 11, 2020 [1]. Since then, the original
strain has diverged into nine clades according to the Global
Initiative for Sharing All Influenza Data (GISAID): G, GR,
GH, GV, L, S, O, V, and GRY. Among these clades, new
variants have emerged, increasing the virus’ infectivity and
virulence [2], which extends the pandemic’s lifespan. A
strategy to contain the outbreak is the vaccine development
and the vaccination campaigns as demonstrated in Israel
[3]. However, there is an increasing concern about the
effectiveness of current vaccines against novel variants [4].

As new variants emerge, vaccine immunity is highly prone
to be compromised. Given this picture, there are two alterna-
tives: i) a continuous development of current vaccines, thus
requiring new pharmaceutical phases, and ii) prediction of
forthcoming variants to develop a global coronavirus vaccine
[5]. The latter seems the most feasible, which involves the
outlining of hCoV-19 informational structure.

Genomes are a network of informational modules inter-
playing to yield phenotypic effects, where such modules
consist of information quanta [6]. However, the virus re-
search has focused on analyzing a limited number of variants
without interrelating them, thereby overlooking a broader
spectrum of biological features. Unraveling the information
quanta and how they developed informational modules is
helpful towards disentangling the hCoV-19 mutagenicity and
hence forecasting hotspots.

Lou et al. [7] outlined genomic compartments with Latent
Dirichlet Allocation (LDA) to unveil the informational net-
work in cell lines. Similarly, Borrayo et al. [8] carried out
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a bacteria phylogenetic analysis with LDA-estimated topics.
Such topics are modules of an informational network in the
human genome that we refer to throughout this paper as
informational compartments. In this work, we developed a
Latent Dirichlet Allocation workflow to pinpoint the hCoV-
19 informational compartments and their correspondence
with the GISAID clades.

II. MATERIALS AND METHODS

A. Database and Data Processing

To analyze hCoV-19 virus with a free-alignment approach,
we retrieved the Latin America viral genomes of all nine
reported clades from the GISAID EpiCov Database (March
7th, 2021) [9]. Then, discarded genomes with undefined
bases below 5% and marked as hosted by nonhuman species.

A viral genome is mapped as a long non-spaced sequence
of four letters known as nucleotides which are adenine
(A), thymine (T), guanine (G), and cytosine (C). Genomic
sequences are oversimplified as an ensemble of individual
elements and tend to be compared to others on a position-
by-position basis. However, complex structures, as genomes,
are built up from information units or information quanta
that altogether unfold any organism’s biological functions
[6]. Hence, a suitable approach to cluster viral genomes is
by comparing these information quanta.

Thus, we considered each sequence as a collection of
overlapped k-length information quanta known as k-mers.
We decomposed the viral genomes into k-mers of k = 9
according to [10]. These 9-mers collections that compound
each genome sequence are called genome corpus. We then
merged all these corpora into the hCoV-19 corpus.

B. Topic Model

Studies have modeled genome corpora as a mixture of
word collections called topics that yield potential phenotypic
effects [8], [11]. Towards modeling the hCoV-19 corpus
into topics, we counted the 9-mer appearance of the hCoV-
19 corpus for each genome, obtaining a matrix called the
genome-corpus matrix. Then, we estimated the matrix topics
with the LDA algorithm.

LDA is a topic modeling technique that estimates the
latent topics from high-dimensional data. This approach
defines each genome as a probability distribution of these
latent topics, and these topics represent a 9-mers probability
distribution. Both topic and 9-mers probability distributions
provide an explicit representation of hCoV-19 genome [7].

LDA assumes the following generative process for each
genome w in a corpus D:

1) Choose N ∼Poisson(ξ ).
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2) Choose Θ∼Dir(α).
3) For each of the N 9-mers wn:

a) Choose a topic zn ∼Multinomial(Θ).
b) Choose a 9-mer wn from p(wn|zn,β ), a multino-

mial probability conditioned on the topic zn.
To set up the topic number suitable to describe the hCoV-

19 virus, we calculated the following metrics [7]:
1) The data posterior likelihood given by multiple LDA

models.
2) The Kullback–Leibler (KL) divergence of the genome-

corpus matrix.
3) The average cosine distance γ among latent topics.
We set the topic number where both the maximum of

Griffiths’ metric and the minimum of KL and cosine distance
converge. Then, we computed the topic distribution of each
viral genome and the 9-mer distribution associated with each
topic.

C. Hierarchical Clustering

To uncover hCoV-19 virus clustering in Latin America
based on its topic distribution, we carried out an agglomer-
ative hierarchical clustering. This clustering method indexes
each genome as a single cluster and then joins clusters by
ranking inter-cluster distances through a linkage function. In
this work, we implemented a Ward criterion to cluster the
Euclidean distance of the topics.

Lastly, to project hCoV-19 virus topic distribution and its
clustering into a low-dimensional representation, we embed-
ded the genome-corpus matrix by the Uniform Manifold
Approximation and Projection (UMAP) technique. UMAP
is a dimension reduction technique that preserves local
topological features among topic distribution by assuming
these distributions build a Riemann manifold and estimating
such manifold. Code is available in Google Drive.

III. RESULTS AND DISCUSSION

The GISAID database consists of worldwide hCov-19
viral genomes grouped in 9 phylogenetic clades, in this
work we focused on those viral genomes corresponding to
the Latin America region, to outline a picture of the least
explored countries during the hCov-19 pandemic. The total
retrieved genomes are 9 471 ranging 29 014 to 30 008
nucleotides and distributed as follows: 1 512 in clade G,
6 024 in clade GR, 1 402 in clade GH, 34 in clade GV, 21
in clade L, 270 in clade S, in for clade O, 35 in clade V, and
52 in clade GRY.

To explore the clade robustness of the current hCov-19
clustering, we developed a topic-free-alignment approach
that clusters viral genomes modeling k-mers collections
called topics and their occurrence in hCov-19 genomes. Such
approach is grounded on the idea that complex information
encoded in genomes is built of information quanta, that
interact in steady pools to unfold phenotypic features [6].

We defined information quanta as overlapped fixed-length
subsequences within genomes called k-mers. We fixed the
k-mer length at 9 nucleotides according to Zhang et. al.

Fig. 1. Zipf’s Law distribution of hCoV-19 corpus. Two regions are shown:
Region I corresponding to viral genome regularities associated with hCoV-
19 identity, and Region II, describing viral clades divergence.

[10]. For each viral genome, we obtained L− 8 9-mers
where L is the genome size, this 9-mer set was known
as genome corpus. Next, we merged all genome corpora
into a new corpus called the hCov-19 corpus. The latter
consists of 87 520 unique 9-mers corresponding to 33.38%
of all available 9-mer permutations (49 = 262144). This
hints that the viral corpus biases towards a singular ordered
structure that potentially differentiates hCov-19 from other
coronavirus and viruses in general. Such orderedness seems
to occur for energetic or informational constraints, as in
natural language vocabularies [12].

To evaluate if the hCov-19 corpus behaves as a vocabulary,
we fit the 9-mers’ probability distribution to a Zipf’s Law
distribution. The Zipf’s Law is a distribution that measures
language regularities, where the frequency n of the m-th most
frequent word (in our case 9-mer) of a text (hCov-19 corpus)
follows the next equation:

n(m)∼ m−s (1)

where s is the score characterizing the Zipf’s Law distri-
bution [13].

Figure 1 shows the Zipf’s distribution fit of the hCov-
19 corpus. There are two differentiable regions, the region
I (in magenta) corresponding to those words (60 894) with
a frequency below ln = 6 that follows accurately the Zipf’s
Law, and region II (in green) with the words (26 626) above
the latter threshold showing a discrete behavior. Region I
hints that the virus has a blueprint built by an informational
regular structure (around 70% of the corpus) that yields
the virus identity, the analysis if such identity differs from
other viruses should be explored but is beyond the scope of
this work. However, the hCov-19 diverges into well-studied
clades, thereby unveiling that there are hotspots lying in the
viral blueprint potentially corresponding to 9-mers in region
II.

COVID-19 displays complex symptomatology, hinting to-
wards information compartmentalization within its genome
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Fig. 2. Clustering UMAP embedding of hCoV-19 informational compartments.

[14], [15]. These informational compartments are informa-
tion quanta interacting together that potentially yield func-
tional pathways that cause such a myriad of symptoms. Bor-
rayo et. al. [8] clustered bacteria with different phenotypes
by modeling such compartments through topics. Hence, we
modeled the viral genome topics using LDA to compare
hCov-19 clades based on their informational compartments.

To determine the suitable amount of informational com-
partments, we estimated the optimum topic number by the
metrics explained in the methodology. The optimal perfor-
mance for the three metrics was at 6 topics, therefore we
modeled the 6 informational compartments (T1 to T6) for
all the hCov-19 genomes with LDA.

Next, we estimated the compartment probability distribu-
tion for each viral genome. Then, clustered the genomes
based on their topic probability distribution with hierarchical
clustering. We performed two clusterings, one with 6 clus-
ters, and the second with 9. The former considering that viral
genomes tend to mainly be yielded by a single informational
compartment, while the latter is based on the approach that
clades are a mixture of the informational compartments.

Since the topic probability distributions are high-
dimensional data, clustering visualization is complex. Thus,
we embedded the data into a 2D space that was estimated
with UMAP. Figure 2 shows the 2D-space clustering for
the two approaches. In both clusterings, the peripheral com-
ponents are labeled as isolated clusters; for the 6-cluster
approach, these are clusters A3, A4, and A5, whereas, for
the 9-cluster approach, these correspond to clusters B1, B2,
B5, B6, and B7. These scattered from the core component
because their composition consists predominantly of a single
informational compartment, i.e., A3 mainly built by T2, and
B5 by T5.

The core component gathers the remaining clusters that
are a quasi-homogeneous mixture of the 6 informational
compartments. The majority of these sequences are from
clades G, GR, GH, GV, the most widely spread throughout

Latin America. This homogenization is likely due to the loss
of hotspots as the variant spreads, resulting in a virus built
with regular 9-mers from region I.

Figure 3 (Interactive Version) shows the intersection be-
tween hCoV-19 clades and clusters for the two approaches.
It is observed that the S, O, GRY and V clades group
into a single cluster for both approaches. This indicates
that they are informationally similar albeit they differ due
to some genomic variations. Otherwise, the overrepresented
clades (G, GH, and GR) are distributed into multiple clusters,
revealing their heterogeneous informational composition.

This indicates that the variant-based classification is nar-
row since it ignores a complex informational structure in the
hCoV-19 genome. To test this, further analysis is necessary,
including all hCoV-19 genomes sequenced worldwide. This
approach may help to unveil informational mechanisms
underlying viral mutations and thus facilitate the vaccine
development that anticipates future hCoV-19 mutations.

IV. CONCLUSIONS

Modeling hCoV-19 mutagenicity is a key challenge for
the current pandemic for developing a global coronavirus
vaccine. This requires unraveling the informational structure
of the virus to predict hotspots. In this paper, we introduced
an LDA-based workflow to identify informational compart-
ments that build up the virus. We pointed out that these
compartments consist of information quanta, that in the case
of hCoV-19 split into two sets, a regular one that yields the
identity of the virus and a quasi-random set containing the
potential virus hotspots.

Our results showed that by analyzing the virus informa-
tional compartments, instead of focusing on single emerging
variants, the clades reorganized into new clusters. These
novel clusters are likely to feature high-level virus phenom-
ena i.e. mortality, infectivity, and mutagenicity. This new
framework represents the first step towards identifying the
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Fig. 3. Correspondence of informational compartments clustering with hCoV-19 clades. On the left for 6 clusters, and on the right for 9 clusters.

virus mutagenicity leading to the development of all-variants-
effective vaccines.
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