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Abstract—In this paper, an algorithm designed to detect
characteristic cough events in audio recordings is presented,
significantly reducing the time required for manual counting.
Using time-frequency representations and independent subspace
analysis (ISA), sound events that exhibit characteristics of coughs
are automatically detected, producing a summary of the events
detected. Using a dataset created from publicly available audio
recordings, this algorithm has been tested on a variety of
synthesized audio scenarios representative of those likely to
be encountered by subjects undergoing an ambulatory cough
recording, achieving a true positive rate of 76% with an average
of 2.85 false positives per minute.

Index Terms—cough counting, independent subspace analysis,
epidemiology, health monitoring

I. INTRODUCTION

The information contained within the sounds produced by

the human vocal tract, such as speech, moaning, sighing, and

coughing, present an opportunity to facilitate remote and non-

contact monitoring of an individual’s health [1]. In relation to

physical health, coughing is a common symptom for which

patients seek medical advice [2], especially in the acute and

chronic categories [3], where a persistent cough can severely

impair an individual’s quality of life. In determining the

frequency and severity of a person’s cough, a clinician can

make a suitable diagnosis relating to a person’s cough, and

this is the objective of a cough detection/monitoring system

[4]. Having an objective measure of a cough is useful when

tracking the progression of an illness [5] especially in the

process of early detection and monitoring [6], highlighting the

importance of cough monitoring systems to aid with tracking

the progress of a disease.

Presented here is an algorithm designed to detect the pres-

ence of candidate cough sounds in audio recordings. The area

of cough detection has received notable attention in recent

years. Semi-automatic approaches using hand-crafted features

as inputs to probabilistic neural networks [7] and statistical

models [8], [9] achieved satisfactory results but rely on input

from operators to successfully detect cough sounds. More

recent algorithms have used eigenvalue decomposition with

random forest classifiers [10], Hu moments with k-nearest
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neighbours [11], spectral features with time-delay neural net-

works [12], convolutional and recurrent neural networks [13],

and spectral features with support vector machines [14].

The nature of cough sounds, as described in [15], share

characteristics with the signals produced by percussive and

harmonic musical instruments. Cough sounds typically begin

with a quick onset of wideband noise, stretching across a

spectrum up to 20 kHz, followed by a short stationary period

dependent upon the cause of the cough. An example of the

phases associated with a cough can be seen in Figure 1. The

Fig. 1. Phases of a cough sound showing explosive phase, intermediate phase,
and decaying voiced phase.

onset of coughs share similar properties to the percussive

characteristics of drums, and in [16] the transient nature

of drum sounds were exploited using independent subspace

analysis (ISA) [17] to automatically transcribe drum tracks

from audio recordings. Due to the nature of ambulatory

cough recordings, cough sounds produced by a person are

likely to be more prominent within these recordings. The

repeated occurrences of a person’s cough and proximity to

a microphone means that the cough sound is likely to be

one of the sources contributing most variance to the recorded

signal. Given the variance based nature of ISA, it is expected

to produce candidate time-activation functions that coincide

with cough events. An example of this algorithm’s output is

illustrated in Figure 2, which highlights the time-activation

functions and corresponding frequency spectra for a short

drum loop containing three sounds (kick drum, snare, hi-hat).
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The approach presented here builds on and refines the ISA

approach for the purpose of cough event detection.
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Fig. 2. Illustration of ISA being applied to a short drum loop, highlighting
the significant time-activation functions and corresponding frequency spectra
of each drum.

II. METHODOLOGY

Many existing approaches to cough detection are trained

in a manner that aims to achieve generalisation such that

algorithms can correctly identify cough sounds in a wide

variety of recording scenarios. While generalisation is de-

sirable in detection algorithms, it may not be required to

achieve satisfactory results when detecting the presence of

repeating events in more constrained scenarios. In ambulatory

cough recordings, the coughs present are likely to come

from a single person, which presents an opportunity, namely

the characteristics of the coughs to be detected in an audio

recording are likely to share similar time-frequency domain

features.

The algorithm proposed in this paper is designed to sum-

marise an ambulatory recording, producing a number of short

audio clips, each of which is likely to contain a cough event.

Using SVD to analyse the spectrogram of an audio signal, a

set of time-activation functions is produced which then under-

goes independent component analysis (ICA). Together, SVD

followed by ICA is known as independent subspace analysis

(ISA). Significant peaks in these time-activation functions are

then used as markers for candidate cough events since these

peaks correspond to the presence of high variance events in

the audio recording. Using a suitable threshold, candidate

events can be marked and extracted from the input audio

signal and presented to the clinician for further analysis and

verification. The algorithm overview is illustrated in Figure 3,

and a MATLAB implementation of the algorithm is available

at [18].

STFT SVD ICA

Kurtosis

Audio signal

Fig. 3. Block diagram illustrating the process of the proposed algorithm.
Further detail of each block in this process is presented in Section II of this
paper.

A. Short-time Fourier transform

The first task of this algorithm is to compute the complex

short-time Fourier transform (STFT) X of the input data x.

This is computed using (1).

X(k,m) =

N−1
∑

n=0

w(n)x(n +mH)e−j2πnk/N (1)

where k is the discrete-frequency index, m is the hop number

for the analysis window, N is the frame size (2048 samples),

and H is the hop size (512 samples). A Hanning window is

used for the window function w, and the sampling frequency

is 44.1kHz. X(k,m) is evaluated for k = 0, ..., N/2 and the

magnitude of these components are retained.

B. Independent subspace analysis

SVD first decomposes the input matrix X into three matri-

ces U , V , and S, to identify subspaces in order of the variance

they contribute towards the original data [19]. In the context

of the magnitude spectrum X , where columns contain the

magnitudes of frequency content for a single analysis window,

U are the frequency basis spectra and V are the corresponding

time-activation functions. The outer product of each spectra

and time-activation pair produces a subspace of the original

input data, and the input data can be reconstructed using

X = USV T (2)

For this algorithm, the columns of V will act as time-

activation functions for cough events in the input data X , and

only the first nine singular values are computed (determined

experimentally to be optimal).

Figure 4 illustrates the input and output of SVD on an

example magnitude spectrum. These pairs of frequency-basis

spectra and time-activation functions (U1, U2, V1, V1) both

contribute towards reconstructing elements of both “sources”

in the magnitude spectrogram. Ideally a single time-activation

function would coincide with each single type of event has

occurred, but in practice this is not the case. This can be

overcome by applying ICA to the time-activation function to

transform the decorrelated time-activations into statistically in-

dependent activation functions [20], [21]. This is the principle

underlying ISA. In Figure 4, the plots on the right show the

output of the ICA stage. The frequency-basis spectrum and

time-activation function pair’s contributions towards recon-

structing both sources in the input magnitude spectrum has

decreased significantly.

C. Time-activation selection and thresholding

Recall that in Section II-B the first nine singular values were

computed. In determining which time-activation functions to

retain, the kurtosis function k(v) is used,

k(v) =

∑M−1

m=0
(Vm,v − V̄v)

4/M

σ4

Vv

(3)

where Vm,v is the mth sample in vth column of V , V̄v and

σVv
are mean and standard deviation of vth column of V ,



Fig. 4. Illustration of the ISA algorithm on a sample magnitude spectrum. Input data (left) undergoes SVD to produce the frequency basis spectra U and
time-activation functions V . Applying ICA to the frequency-basis spectra and time-activation functions results in improved separation of the events, as can
be seen in the four plots to right.

respectively. When normalised, kurtosis is 0 for a Gaussian

distribution, positive for a “peakier” or leptokurtic distribution,

and negative for a “flatter” or mesokurtic distribution. Sparse

events are likely to occur sporadically in the time-activation

functions, meaning a majority of near-zero values, resulting

in a leptokurtic distribution. The time-activation functions

with the three highest kurtosis measurements are retained and

rectified to produce three candidate time-activation functions

c1, c2, and c3, for further analysis.

Peaks in each time-activation function correspond to mo-

ments in the input signal where the contribution of the cor-

responding frequency-basis spectrum is greater. A threshold

τ = a.σc is applied to the candidate time-activation functions

to identify peaks, where σc is the standard deviation of c, and

a is a constant, with 4 < a < 8.

Retained peaks from the candidate time-activation function

are used to generate a summary of the input signal, where 1 s
windows around each peak are extracted from the input signal

and concatenated to produce the short summary of the input

signal.

D. Dataset and evaluation

The dataset used in evaluating the proposed algorithm

was constructed from a number of publicly available cough,

non-cough, and background sources collected from YouTube

videos [22] and the DCASE 2016 Challenge [23]. Each test

signal comprises 20 coughs produced by one individual and

alternative foreground sounds (door knocks, table banging,

speech, laughing, etc.). In total, 10 test signals were created

with a duration of 10 minutes each. Instructions for reproduc-

ing these test signals, including annotations and URL links,

can be accessed at [18].

The evaluation framework used here is adapted from [24],

a framework for polyphonic sound-event detection which

overcomes the limitations of collar-based event decisions and

labelling subjectivity by annotators. True positive (TP) or false

positive (FP) decisions rely on the degree of overlap with

annotated events.

The overlap to between an annotated event and detected

event (see Figure 4) is measured and expressed as a ratio of

a 500ms window, based on the average duration of coughs

presented in [25]. When this ratio exceeds the detection

tolerance criteria ρDTC , the detected event is labelled a TP,

otherwise FP is declared,

D =

{

TP, if to
500ms > ρDTC

FP, otherwise
, 0 < ρDTC ≤ 1 (4)

where D is a single detection and ρDTC = 0.3. Undetected

annotated events are classed as false negatives (FN).

Fig. 5. Overlap between the time of a detected event tp and time of an
annotated event ta is used to determine if a detected event is classified as a
TP or FP. The overlap time to is expressed as a ratio of a 500ms window.
When this ratio exceeds the detection tolerance criteria ρDTC the detected
event is marked as a TP.

The performance of this algorithm is quantified using the

true positive ratio (rTP ) and the false positive rate (RFP ) [24],

rTP =
NTP

P
RFP =

NFP

Tdur
(5)

where NTP and NFP are the number of true and false

positives, P is the number of annotated cough events, and

Tdur is the duration of the signal being analysed.

III. RESULTS AND DISCUSSION

The mean values for the true positive ratio, false positive

rate, and summarised duration across all test signals are

presented in Table I. These results were produced for each

time-activation function. Activation function c1 achieved the

best performance in each metric across all mean values,

suggesting this is the appropriate activation function to use.

The increase in false positive rate with c2 and c3 suggests

that these activation functions encapsulate features common

to both cough and non-cough events after SVD.

Table II highlights a best-case scenario which includes the

metrics for each test signal and the associated activation

function that achieved this result. For the majority of results,

c1 produced the best case which aligns well with the results



TABLE I
SUMMARY OF RESULTS FROM ALL CANDIDATE TIME-ACTIVATION

FUNCTIONS (c1, c2 , AND c3) SHOWING THE MEAN RESULTS ACROSS ALL

TEST SIGNALS.

c rTP (%) RFP (min−1) T (min)

1 76.00 2.85 0.73
2 67.00 4.17 0.92
3 39.00 6.26 1.17

from Table I. For signal #3 an #5, the activation functions that

achieved the most desirable results are c3 and c2, respectively.

Assuming that the appropriate time-activation functions are

used, an improvement in the mean true positive ratio and false

positive rate is observed.

TABLE II
A BEST-CASE SCENARIO REPRESENTATION OF THE RESULTS, WHERE c IS

THE cth ACTIVATION FUNCTION, rTP IS THE TRUE POSITIVE RATIO, RFP

THE FALSE POSITIVE RATE, AND T IS THE SUMMARISED SIGNAL

DURATION.

# c rTP (%) RFP (min−1) T (min)

1 1 70 4.5 0.98
2 1 90 3.4 0.87
3 3 95 1.4 0.55
4 1 100 4.00 1
5 2 100 0.6 0.43
6 1 90 2.2 0.67
7 1 95 0.5 0.4
8 1 90 6.7 1.42
9 1 95 3.6 0.92
10 1 100 1.2 0.53

Mean 92.50 2.81 0.77

From the results presented here, ISA has shown to be a

reliable method for detecting the presence of cough sounds

in audio recordings. Referring to Table II, it can be seen

that the majority of cough sounds are accurately represented

within a single time-activation function, c1 in this case, which

supports the use of kurtosis as a suitable statistical measure

for determining which activation function to use to achieve

the most desirable results. On average, kurtosis produces the

best activation function to use as shown in Table I. The mean

results can be improved by selecting the time-activation func-

tion containing the coughs manually. An automatic method

of determining which activation functions could be used to

complement this algorithm and improve overall results, as

shown by the mean calculations in Table II.

IV. CONCLUSIONS

Building on an approach used for automatically transcribing

drum sounds, the proposed algorithm uses ISA for detecting

the presence of an individual’s cough within audio recordings,

reducing the human effort required by medical staff to identify

cough events within long recordings.

An average true positive ratio of 76%, and a false pos-

itive rate of 2.85 false positives per minute was achieved,

with a significant reduction in the duration of signals. This

algorithm’s ability to detect cough sounds is evident, and a

reduction in false positives will improve the overall perfor-

mance. A solution to consider in future work utilises multiple

analysis windows during the SVD stage, taking advantage of

the varying spectral characteristics observed during different

phases of a single cough event. Also planned is a more detailed

comparison against other state-of-the-art cough-detection ap-

proaches.
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