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Reconstructing the shear modulus contrast of linear elastic and
isotropic media in quasi-static ultrasound elastography

Elisabeth Brusseau1, Lorena Petrusca1, Elie Bretin2, Pierre Millien3 and Laurent Seppecher4

Abstract— This study focuses on the reconstruction of the
shear modulus contrast in linear elastic and isotropic media,
in quasi-static ultrasound elastography. The method proposed
is based on the variational formulation of the equilibrium
equations and on the choice of adapted discretization spaces
to estimate the parameters of interest. Experimental results
obtained with CIRS phantoms are presented, for which regions
with different mechanical properties can be clearly identi-
fied in the stiffness contrast maps. Elastic modulus images
collected with a shear-wave elastography technique from a
clinical ultrasound scanner (Aixplorer) are also provided for
comparison. Results show very similar values for the modulus
ratios determined by the two elastography approaches.

I. INTRODUCTION
Elastography techniques have been introduced to

supplement conventional imaging with information on
the mechanical properties of biological tissues [1]. The
quasi-static ultrasound approach analyzes the internal
displacements and strains that tissues experience when
they are subjected to compression [2], [3]. Although this
technique is generally limited to strain imaging, its ability
to distinguish regions differing in stiffness is recognized.
Strain images, however, do not exactly reflect the variation
in elastic modulus, as the stress distribution is not uniform.

Various approaches can be found in the literature for
reconstructing the mechanical parameters or stiffness
contrast in a medium [4]. Among the methods developed for
quasi-static ultrasound elastography is the direct inversion,
as proposed in [5] for example to recover the spatial
distribution of the Young’s modulus E in a 3D body.
The method consists in substituting, in the equilibrium
equations, the stress terms using the material constitutive
law. Assuming that the Poisson’s ratio is known and constant
throughout the body, this results in equations where the
unknowns are the spatial derivatives of E, divided by E.
Values of E are then determined relative to a reference (e.g.
the surface Young’s modulus) which, when known, leads to
moduli in kPa. Because of its simplicity, direct inversion is
an attractive method. Nevetheless, it requires differentiating
the displacement and strain fields, which dramatically
affects the results if the displacements are initially noisy.

Mapping the Young’s modulus can also be formulated
as an optimization problem, where the modulus values are
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iteratively varied until mimimizing an error between the
displacements or strains determined by solving the forward
problem and those measured experimentally [6], [7]. In prac-
tice, difficulties can be encountered for clinical applications,
because some boundary information is needed.

Recently, the use of machine learning has been reported.
In [8] for instance, Hoerig et al. investigated the mechanical
properties of media under quasi-static load. Their approach
consists in learning the stress-strain relationship, to then
deduce the parameters of interest. However, a set of force-
displacement measurements has to be provided as input data.

As significant differences in the mechanical properties are
expected between healthy and pathological tissues, stiffness
contrast assessment is of interest for diagnosis. This explains
the use of strain ratios in quasi-static elastography, even
though they only partially reflect the modulus contrast [9].
In shear-wave elastography also, the stiffness ratio appears
as a useful parameter, able to differentiate benign from
malignant lesions [10], [11]. The present study focuses on
shear modulus contrast reconstruction of linear elastic and
isotropic media in quasi-static elastography. In a recent
paper [12], we introduced a first 2D method to reconstruct
this contrast from the knowledge of 2D displacement fields.
This method, based on a problem weak formulation, used a
classical finite element discretization with a triangular mesh,
as well as a total variation (TV) regularization applied on
the searched parameters. Performing various tests has led us
to modify this approach, which now uses a hexagonal mesh
with triangular sub-mesh, while the TV regularization has
been removed. The new method is fully described below,
and the improvement in the results illustrated with simulated
data. Experimental results are also presented and compared
with those from a shear-wave elastography technique.

II. METHOD

This study focuses on the reconstruction of shear modulus
maps up to a multiplicative constant, in linear elastic and
isotropic media, from displacement fields obtained in quasi-
static ultrasound elastography. Because the data generally
available in ultrasound imaging are 2D images, the 2D
problem has been investigated, i.e. recovering the spatial dis-
tribution of the shear modulus µ(x, y) up to a multiplicative
constant (x and y being the spatial coordinates), from 2D
displacement fields u(x, y) estimated in a 2D domain Ω.
Let us consider a linear elastic and isotropic medium. The
constitutive equation of such a medium is:



σij = 2µεij + λδijεkk (1)

where λ with µ are the Lamé parameters, σij and εij the
components of the stress and strain tensors, σ and E , respec-
tively, δij the Kronecker delta, and εkk, the trace of E . The
displacement field u inside Ω resulting from a quasi-static
elastography experiment, satisfies the equilibrium equations.
Neglecting the body forces, these equations write

∇ · σ = 0, (2)

and combining (1) and (2) gives

∇ ·
(
2µE(u)

)
+∇(λ∇ · u) = 0, (3)

with E(u) :=
(
∇u + (∇u)>)/2 the strain tensor, and ∇·

and ∇, the divergence and gradient operators, respectively.

A. Weak formulation

The method proposed is based on a variational formulation
of (3). As the unknown parameters λ and µ are discontin-
uous, we look for them as elements of the parameter space
M := L2(Ω). Moreover, test functions v ∈ V := H1

0 (Ω,R2)
are chosen such that they vanish at the domain boundary
(∂Ω), as no information on the applied forces is available.

H1
0 (Ω,R2) :={
v ∈ L2

(
Ω,R2

)
| ∇v ∈ L2

(
Ω,R2×2

)
, v|∂Ω = 0

}
.

(4)

Then, multiplying (3) by v, taking the integral and finally
integrating by parts, leads to∫

Ω

2µE(u) : E(v) +

∫
Ω

λ(∇ ·u)(∇ · v) = 0 ∀v ∈ V, (5)

with E(u) : E(v) :=
∑

ij E(u)ijE(v)ij .

B. Finite element method

To build a finite dimensional system of equations, we
approach the two function spaces M and V by finite di-
mensional discretization subspaces Mh ⊂ M and Vh ⊂ V
where h > 0 is a parameter of discretization. Let us denote(
eMh

1 , . . . eMh

dimMh

)
a basis of Mh and

(
eVh

1 , . . . eVh

dimVh

)
a

basis of Vh. With µ =
∑

j µje
Mh
j and λ =

∑
j λje

Mh
j , it

follows from (5) that

Aµ+ Bλ = 0, (6)

with {
Aij :=

∫
Ω

2eMh
j E(u) : E(eVh

i )

Bij :=
∫

Ω
eMh
j (∇ · u)(∇ · eVh

i ),

λ := (λ1, . . . , λdimMh
)> and µ := (µ1, . . . , µdimMh

)>.

C. Choice of discretization spaces

The choice of a pair of discretization spaces Mh and Vh is
difficult, and is certainly the key question of this inversion.
Here, we have found that a very efficient discretization tech-
nique that has excellent numerical stability is the honeycomb
space discretization. The domain Ω ⊂ R2 is covered by a
hexagonal honeycomb tiling of edge size h > 0,

Ω =

Nh⋃
k=1

Ωh
k . (7)

A sub-discretization of Ω is also performed using an adapted
equilateral triangulation {τhk }. We choose the parameter
approximation space Mh as the class P0

(
{Ωh

k}
)

of functions
that are constant in each hexagon. Moreover, we define Vh
as a subset of the classical P1

(
{τhk },R2

)
finite element

class. More precisely, for each intersection node pi of three
adjacent hexagons, we define ϕi as the unique function that
is linear in each triangle and that satisfies ϕi(pi) = 1, and
cancels at any other nodes of the triangular sub-mesh. Let
us now define the vector-valued test functions

eVh

ik (x, y) := ϕi(x, y)

[
δ1k
δ2k

]
k = 1, 2, (8)

for i such that pi is an intersection node of three hexagons.
The space Vh is the subspace of V generated by these
functions.

D. Solution computation

The problem is reduced to finding nonzero solutions of

Mp = 0, (9)

with M :=
[
A B

]
and p :=

[
µ
λ

]
. More precisely, the

problem to be solved is:
argmin

p
‖Mp‖22 (10)

subject to some constraints, such as bound constraints since
the parameters to be determined are necessarily positive
values, or the values of p on the domain boundary equal
to 1. In practice, the solution computation is peformed using
the CVX Matlab toolbox [13], [14].

E. Use of multiple data

Using not only one, but multiple displacement data
u1, . . . ,un, can be easily performed with our approach. For
each displacement field u`, the corresponding matrix M` is
built, as explained above. The multiple data problem is then
formulated as in (10), but with M :=

[
M1 . . .Mn

]>
. The

use of multiple data is adapted to our application since se-
quences of displacement fields during medium compression
are typically obtained in elastography.

III. RESULTS

A. Contribution of the new approach

To illustrate the contribution of the new method compared
with the initial one, an example of results is displayed
in Fig. 1, obtained with a 2D simulated medium. This
medium consists of a circular inclusion embedded in a homo-
geneous background material. The inclusion-to-background
shear modulus ratio is equal to 3 (Fig. 1a). Medium compres-
sion was simulated using Comsol Multiphysics [15] and the
resulting displacements were used to estimate the stiffness
contrast. Shear modulus contrast maps computed with the
method using a triangular mesh (Fig. 1b), a triangular mesh
and the TV regularization (former method, Fig. 1c), and with
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Fig. 1. Shear modulus contrast (SMC, without unit) maps obtained with
the 2D simulated medium. (a) Theoretical map (axes are in mm), and maps
reconstructed with (b) a triangular mesh and without TV regularization,
(c) using triangular mesh and TV regularization (former method), and (d)
with the new method. In (d), the ROI selection for inclusion-to-background
stiffness ratio computation is also shown. (e) and (f), profiles along the
vertical and horizontal lines crossing the center of the inclusion, respectively,
for the theoretical map (black), and the maps obtained with the triangular
mesh only (blue), the former method (magenta), and the new method (red).

the new approach (Fig. 1d), are shown. We can observe that
the former method (Fig. 1c) leads to an image where the
inclusion is clearly revealed with a well-defined boundary.
As expected, the TV regularization resulted in a smoothing
of the map, and more particularly of the inclusion which
appears now uniform. However, compared with the theoret-
ical map (Fig. 1a), a lower contrast can also be noted. With
the new approach (Fig. 1d), similar comments can be made
regarding the inclusion boundary and smooth appearance,
but the stiffness ratio is this time very close to the one
expected. For a more quantitative assessment of the results,
inclusion-to-background stiffness ratios are here provided,
by selecting regions of interest (ROIs) inside the inclusion
and the background, and computing the ratio of their mean
values. The region selection is performed identically for the
three estimated maps, and for each case, two ratios are
computed, from two different ROIs in the background (as
shown in Fig. 1d). These ratios are 2.29 and 2.37 for the
method using the triangular mesh, 2.20 and 2.25 for the
former method, and 2.98 (twice) for the proposed approach,
the latter being in perfect agreement with the theory. Finally,
two profiles along the vertical and horizontal lines crossing
the center of the inclusion are also displayed (Fig. 1(e,f)),
for a more complete illustration of the results.

B. Experimental results

Three examples of results obtained from phantom experi-
ments are detailed below.

1) Phantom specifications and data acquisition: Two
CIRS phantoms (models 049 and 059, Computerized Imag-
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Fig. 2. Results obtained with the CIRS model 049, Type IV inclusion
(case #1). (a) axial and (b) lateral displacement (in mm), (c) axial strain (in
%), and (d) reconstructed shear modulus contrast map. In (a), axes are in
mm.

ing Reference Systems, Norfolk, VA, USA) were used. The
CIRS model 049 is a parallelepiped-shaped medium, with
several spherical inclusions of different stiffnesses inside. For
this phantom, two regions were scanned. Both contained a
10-mm in diameter inclusion, whose Young’s modulus is 81
kPa for the first region (Type IV inclusion, case #1), and
47 kPa for the other one (Type III inclusion, case #2). The
Young’s modulus of the background material is 26.5 kPa.
The second phantom – model 059 – has an external shape
that mimics a female breast, and contains several spherical
inclusions that are stiffer than the surrounding medium. The
Young’s moduli of the inclusions and the background are
43.3 kPa and 13 kPa, respectively. The region examined
included a single inclusion (case #3). Note that the phantom
specifications were all provided by the manufacturer.

Radiofrequency (RF) ultrasound images were collected
during typical quasi-static elastography experiments, where
the operator cautiously compressed the medium with the
probe. Data were acquired with an Ultrasonix ultrasound
scanner equipped with a L14-5W/60 linear array transducer.
The sampling frequency was 40 MHz. Finally, displacements
were estimated from RF data, using our method previously
developed for strain imaging [16], and regularized before
recontruction.

2) Shear modulus contrast reconstruction: The results are
presented in Figs. 2-4 with, for each case, an example of
the estimated displacement fields, of the axial strain and the
reconstructed shear modulus contrast map. All the recon-
structions were performed using multiple (five) displacement
fields. As the reconstructed maps are obtained up to a
multiplicative constant, they were divided by their minimum
value before display, and are therefore without unit.

In all the cases examined, the inclusion is clearly brought
out in the modulus contrast map. These maps are in agree-
ment with what is expected, even though some variations
can remain in regions supposed to be mechanically homoge-
neous. For each case, two inclusion-to-background stiffness
ratios were computed. These ones are 3.2 and 3.3 for case
#1, 1.5 and 1.5 for case #2, and 2.1 and 2.2 for case #3.
Compared with those given by the manufacturer (81/26.5;
47/26.5; 43.3/13), these ratios are relatively close, except for
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Fig. 3. Results obtained with the CIRS model 049, Type III inclusion (case
#2). (a) axial and (b) lateral displacement (in mm), (c) axial strain (in %),
and (d) reconstructed map. In (a), axes are in mm.
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Fig. 4. Results obtained with the breast phantom (case #3). (a) axial and (b)
lateral displacement (in mm), (c) axial strain (in %), and (d) reconstructed
map, with an illustration of ROI selection. In (a), axes are in mm.

case #3, for which much lower values are obtained. To more
deeply analyze and assess these results, a comparison with
a shear-wave elastography technique was performed, using
an Aixplorer ultrasound scanner (SuperSonic Imagine, Aix-
en-Provence, France) equipped with a SL15-4 transducer.
This system provides images of the Young’s modulus E,
proportional to µ, which allows for the stiffness ratios from
both techniques to be directly compared. Elastograms are
presented in Fig. 5, along with an illustration of ROI selec-
tion for inclusion-to-background stiffness ratio computation
in Fig. 6. These ratios are here found to be 3.4 and 3.6 for
case #1, 1.4 and 1.6 for case #2, and 2.1 and 2.2 for case
#3. It is remarkable that, although different in their approach,
the two elastography techniques provide very similar ratios.
Moreover, the same unexpected low values for case #3
are observed, and will require additional work to be fully
understood.

IV. CONCLUSIONS

In this study, a method for reconstructing the contrast in
the shear modulus within a medium in quasi-static ultrasound
elastography has been presented. The initial experimental
results are encouraging, with inclusions that are clearly
revealed in the new maps, and modulus ratios comparable
to those provided by a clinical ultrasound scanner. Future
work will be dedicated to further assessing and improving
the method. In particular, this approach was developed in 2D
as the ultrasound data available were 2D images. However,
actual displacements and strains are 3D, and the 2D vs 3D

Fig. 5. Young’s modulus images (in kPa) obtained with the Aixplorer
ultrasound scanner. From left to right: model 049 - Type IV inclusion (case
#1), model 049 - Type III inclusion (case #2), and model 059 (case #3).

Fig. 6. Illustration of modulus ratios provided by the Aixplorer. The region
analyzed is the one of the breast elastography phantom (case #3).

problem will be particularly investigated.
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