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Continuous Non-Invasive Eye Tracking In Intensive Care
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Abstract— Delirium, an acute confusional state, is a common
occurrence in Intensive Care Units (ICUs). Patients who develop
delirium have globally worse outcomes than those who do not
and thus the diagnosis of delirium is of importance. Current
diagnostic methods have several limitations leading to the
suggestion of eye-tracking for its diagnosis through in-attention.
To ascertain the requirements for an eye-tracking system in
an adult ICU, measurements were carried out at Chelsea &
Westminster Hospital NHS Foundation Trust. Clinical criteria
guided empirical requirements of invasiveness and calibration
methods while accuracy and precision were measured. A
non-invasive system was then developed utilising a patient-
facing RGB camera and a scene-facing RGBD camera. The
system’s performance was measured in a replicated laboratory
environment with healthy volunteers revealing an accuracy and
precision that outperforms what is required while simultane-
ously being non-invasive and calibration-free The system was
then deployed as part CONfuSED, a clinical feasibility study
where we report aggregated data from 5 patients as well as the
acceptability of the system to bedside nursing staff. The system
is the first eye-tracking system to be deployed in an ICU.

I. INTRODUCTION

Delirium is an acute confusion state that is a fluctuat-
ing, usually reversible, cause of cerebral dysfunction that
manifests clinically with a wide range of neuropsychiatric
abnormalities. This state can occur in any acutely unwell
patient but occurs with high incidence on Intensive Care Unit
(ICU) owing to the acuity of diseases [1]. An estimate of the
incidence of delirium in acutely unwell patients is 20% and
has been reported as high as 80% [2], [3].

The development of delirium in patients leads to increased
risk of dying, increased hospital length of stay, increased cost
of stay and worse cognitive scores compared to patients who
do not [4], [5], [2]. Thus, the contemporaneous diagnosis of
delirium is of paramount importance. Current methods of
diagnosis are laborious and often miss episodes of delirium
due to the disease being time-variant, or are only applicable
to a small subset of patients.

To aid in the timely diagnosis of delirium, we propose
a non-invasive system that relies on eye-tracking as a bi-
ological signal of inattention as a surrogate marker for
delirium. The system is continuous, provides data in real-
time, does not require patient involvement for calibration, is
accurate and does not limit or restrict movements. Empiric
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Fig. 1: The proposed system for eye tracking in ICU. Two cameras
are used, an RGB patient facing camera (head-camera, blue) and a
perspective facing RGBD camera (scene-camera, green) connected
to a laptop (outside the viewpoint) running Robot Operating System
(ROS). The flow of information through the system is demonstrated
with the head-camera and scene-camera running concurrently.

measurements in an adult ICU led to a set of requirements
around invasiveness, calibration, accuracy, and precision.
Under replicated laboratory conditions, the performance of
the system was shown to be suitable for use in an adult
ICU where it outperforms requirements. Following ethical
and governance approvals for a clinical feasibility study
(CONfuSED EI) the system was deployed on patients in ICU
to test its suitability. We report on descriptive statistical data
on the initial 5 patients. We also report on the acceptability
of the system to the bedside nursing staff.

II. RELATED WORK & DIAGNOSTIC METHODS

Manual assessment methods, specifically the Confusion
Assessment Method in ICU (CAM-ICU), are currently the
most widely adopted systems in use for the diagnosis of
delirium [6], [7]. The test relies on inattention as its primary
method of diagnosis of delirium.

Electroencephalogram (EEG) is of limited use owing to
technological limitations but more recent attempts use deep
neural networks for the diagnosis of delirium in a clinically
representative population [8], [9], [10]. EEG, however, re-
quires the placement of electrodes on a patient’s scalp for
a prolonged period to ensure adequate signal acquisition
hampering its clinical safety.

Eye-tracking technology has had success in inferring
covert internal mental states [11], [12]. Clinically, eye-
tracking is established in numerous fields where its success
has led to the suggestion that it can be used for the diagnosis
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of delirium through inattention [13], [14]. The application of
eye-tracking in ICU has been limited by the technological
limitations of currently available systems. To the knowledge
of the authors, no suitable system has been developed or im-
plemented that facilitates the acquisition of eye movements
from delirious patients in a clinical setting.

III. SYSTEM REQUIREMENTS

ICU presents a challenge for eye-tracking technology. The
mixture of patient, disease, environment, staff and medical
equipment regulations all coalesce together placing the fol-
lowing clinical empirical requirements:

a) Non-Invasive: Due to the nature of patients and their
disease in ICU, a non-invasive system is required owing to
the need for clinical hands-on care. Having a device that
instruments the patient will interfere with clinical care and
is thus potentially unsafe. This also infers that a device that
facilitates free-viewing is required — a system that does not
restrict the patient for signal acquisition.

b) Calibration-Free: In delirium, patients are unable
to follow commands making calibration through command-
following difficult. The system must be able to track the
patient’s gaze without an explicit calibration step that maps
eye movements to scene gaze positions.

c) Accurate: The required accuracy of a system is
dependent on its domain use; In ICU, accuracy facilitates
the identification of which object the patient is looking at
and correlates with the spread of objects in the patient’s
perspective.

d) Precise: Precision, defined as the reproducibility
of measurement, is important as low precision leads to
uncertainty on the gaze estimate. Low uncertainty facilitates
subsequent analysis through the reliable classification of eye
movements. In this context, the size of objects from the
point of view of the patient correlates with precision. High
precision leads to reproducible measurements which leads to
low spread and the ability to identify small objects.

e) Performant: Eye movement research suggests that
fixations typically last between 0.1 - 0.5 seconds giving a
minimum required frequency of 20Hz by Nyquist criteria
[15]. This system would ideally run on commercially avail-
able hardware.

IV. METHODOLOGY

To meet the challenges set out by the empirical re-
quirements, we have designed a system that decouples the
regression of the patient’s eye and head pose from where they
are looking in the scene through the use of a dual-camera
system as per Figure [I] One camera located in front of the
patient at the foot end of the bed facing the patient (termed
the head-camera) and another behind the patient facing the
same direction as the patient (termed the scene camera). The
head-camera is a Red-Green-Blue (RGB) camera whereas
the scene-camera is required to be a Red-Green-Blue-Depth
(RGBD) camera. The decoupling of the eye gaze regression
and gaze inference through the use of two cameras satisfies
the first requirement of Non-invasiveness as per Section [III}
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Fig. 2: Density plots demonstrating the required accuracy and
precision from empirical measurements and the system’s metrics
as evaluated in the replicated environment in the laboratory.

a) Scene-Camera: The scene-camera performs head-
camera pose estimation and gaze vector-scene intersection.
The head camera’s pose is measured using a ChAruCo board
which is fixed superior to the head-camera — a once only
calibration procedure yields a static pose between the head-
camera and its board [16]. The resolution of the scene camera
is dependent on its ability to resolve this marker reliably -
we utilise a 1920x1080 pixel resolution at 30Hz. Once the
gaze-vector has been estimated from the head camera, it is
the scene camera that resolves that vector as a point in the
scene. This is done using a ray-octree intersection that is
created from the point cloud received from the scene camera.
[17].

b) Head-Camera: The patient-facing head-camera car-
ries out multiple steps that ultimately result in the head-pose
and gaze-vector of the patient relative to the head camera.
The head camera’s pose as estimated from the scene camera
creates a transformation tree that facilitates the location of
the patient’s gaze relative to the scene camera which acquires
the point of view of the patient.

The first step is face detection. Following experimental
evaluation between various face detectors, the Single Shot
Scale-invariant Face Detector (S3FD) face detector was used
for its robust detection at extreme head poses [18]. The
output is a bounding box around potential faces and the
confidence of each detection. The camera specification is
linked to its ability to reliably produce a high-resolution
image of the face - we utilise a 1024x768 pixel resolution
at SOHz.

Following face-detection, the patient’s head-pose is then
estimated by solving a perspective-n-point problem that aims
to align a generic 3D model of a human’s head with the
extracted landmarks from the patient [19]. Multi-Task Cas-
caded Convolutional Networks for Joint Face Detection and
Alignment (MTCNN), Fine-Grained Head Pose Estimation
Without Keypoints (HopeNet), and Face Alignment in Full
Pose Range: A 3D Total Solution (3DDFA) were evaluated
for head-pose estimation using a composite score comprised
of accuracy, performance at inference time and utilisation



Variable Validation CONfuSED
(n=6) (n=5)

Age 25-32 18 -73

Gender (male = 1) 5 3

Vision Corrected (Glasses = 1) 2 2

TABLE I: Demographics data of participants in validation experi-
ment and patients in CONfuSED.

of GPU Memory. 3DDFA had the lowest composite score
and hence was chosen. Its output is 68 2D landmark points
in image space that consistently outline the facial features
of the patient’s face. By knowing the camera calibration
matrix and having a predefined model, a direct least squares
method is utilised following a Random Sample Consensus
(RANSAC) scheme to obtain the pose of the patient’s head
relative to the head-camera [20], [21]. The 3D model’s size
is parametrised by the patient’s inter-pupillary distance with
0.06 metres used as the default. The landmarks extracted
from the previous stage also result in the extraction of two
image patches of the patient’s eyes which are then used for
gaze regression. Real-Time Eye Gaze Estimation in Natural
Environments (RT-GENE), a neural network-based model
that regresses gaze vector from eye patches, was chosen
for its published accuracy in natural viewing environments
while Real-Time Blink Estimation in Natural Environments
(RT-BENE) is used for blink detection following improve-
ment through a data augmentation scheme and the use of a
ResNet-18 as the backbone for increased speed and accuracy
[22], [23]. RT-GENE was modified in this work to optimise
inter-process communication and reduce latency between
image capture and gaze estimation. The resolution of the
camera (1024x768) results in eye-patches that are down-
sampled for the consumption through RT-GENE/RT-BENE
at a clinically safe distance of approximately 2 metres. The
use of RT-GENE and RT-BENE in this pipeline satisfies the
requirement for the system being Calibration-Free as per
Section [III

The required accuracy and precision from an eye tracker in
ICU were measured in situ. Measurements of the scene from
the point of view of 5 patient from 5 different environments
were undertaken across our ICU. Accuracy, as defined as the
difference between a target location and the measured gaze
relative to the user’s head correlates with the identification
of which object in the scene the patient is looking at and
thus, given a collection of objects in the scene, the average
distance between objects is of interest. The distances be-
tween objects in the viewpoint of the patient and their relative
distance to the patient’s head were measured. The average
of these measurements then form the minimum required
accuracy of the system. To ascertain a similar requirement
for precision, the size of objects and their distance to the
patient’s head was measured. In this context, the size of the
object in the scene correlates to repeatability — the smaller
the size of the object, the higher the precision required for
the identification of the object the patient is looking at.
The average of these measurements then forms the required

precision. Formally:

N
1
Accuracy = i Zcos_l(\gazei\ - [target|) (1)
i=1

N-1

Precision = N z; cos™!(|gaze;t1| - |gaze])®  (2)
b

where - is the vector dot product and |z| is vector normalisa-
tion to unit length. The gaze vector is measured to start from
the head pose’s transform and extends to a unit length. The
target vector is measured to also start from the head pose
transform and extends to the target.

To measure the performance of the system, six healthy,
vision-corrected, non-delirious volunteers were recruited to
undergo testing of the accuracy and precision of the system
(Table [l). An ICU replicated environment was created under
laboratory conditions and the bed was inclined at 30 degrees.
The participant’s head-pose and gaze vector were regressed
from the head camera placed on the bottom left-hand side of
the screen. Each participant was asked to look at the centre
of an AruCo marker that would appear at a random location
of the screen that was 0.1 metres in size; 40 samples were
taken per marker. The experimental endpoint was defined
as full coverage of the screen by target markers. For each
marker location, outliers consisting of the first 10 and last 10
measurements were discarded concentrating on the middle 20
measurements to remove gaze points leading into and out of
the target marker. For each marker location, the accuracy
and precision were calculated as per Equations [I] & [2]
For visualisation, median accuracy for each marker is then
rasterised onto an image with the resolution of the screen
which is then smoothed with a Gaussian kernel.

As part of a clinical feasibility pilot trial that aims to look
at at the use of this system on the detection of delirium
in ICU, the system was deployed on 5 patients. We report
aggregated descriptive statistical plots to demonstrate the per-
formance of the system in patients suffering from episodes
of delirium compared to episodes without delirium.

In assessing the acceptability of the system clinically, a
questionnaire was deployed to the staff that were nursing
the patients recruited into CONfuSED (Table @) [24].

V. RESULTS

By utilising two cameras placed at a clinically safe dis-
tance, the system meets the clinical requirement of being
non-invasive. RT-GENE and RT-BENE ensure that patient
calibration is not required for the accurate and continuous
measurement of gaze throughout the patient’s ICU stay.

Figure [2] demonstrates the distribution of required accu-
racy and precision measurements. The required accuracy &
precision density plot was of measured objects from the
perspective of the patient in an ICU bed-space. Pairwise
distances were measured as the shortest distance between
objects. Size/Distance measurements were then converted to
angles from the perspective of the patient as they are sitting
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Fig. 3: Aggregated results for all participants demonstrating the
accuracy and precision per marker where X & Y axes represent the
ArUco marker location on screen in Pixels. The sensitivity of the
camera’s position relative to the viewer is evident where the highest
accuracy and precision is when the user’s head pose is directed at
the camera.

in an ICU bed. This reveals that an accuracy of 15.4° and
a precision of 6.4° is thus required for a clinically useful
system.

Figure [2] also demonstrates the accuracy and precision
results from the replicated laboratory ICU across all partic-
ipants pooled across all marker locations. Median accuracy
is 4.4° with a median precision of 2.7° as defined by
Equations [T] & 2] respectively. These results exceed empiric
requirements making the system’s performance suitable for
use in ICU.

In the laboratory experiment, grouping by markers, Fig-
ure 3] displays aggregated results across all participants where
each marker’s median accuracy and precision are rasterised
as an image the size of the marker and then smoothed with a
Gaussian kernel. As the utility of this eye-tracking system is
in ICU, a median error of 4.4° is lower than the 15.4° . The
figure demonstrates the sensitivity of the camera’s placement
relative to the user’s head as the error of the system is not
uniform; median accuracy is lowest at the bottom left which,
from the perspective of the head-camera, represents the most
challenging eye image to regress as the eye is mostly closed.
Median precision is worse in the top-right where the eye is
the most open but the head is rotated giving only 1 eye to
regress a gaze vector thus giving the least precision.

Optimisation of the pipeline through internal validation
experiments led to acceptable performance on commercially
available hardware. The total rate of 28Hz is of sufficient
performance to yield to eye movement analysis.

Figure [] demonstrates the measurements that the system
generates on patients in ICU. The system was successfully
deployed on 5 patients where some of whom developed
episodes of delirium. Blinks, eye and head angles are dis-
played as aggregated density plots. Extreme head angles are
as a result of occlusions of the patient’s face - examples
of such occlusions are the patient’s hands occluding their
face, nurses interrupting the line of sight between the camera
and the patient and nasogastric tubes. These periods of
occlusions could be mediated by increasing the threshold for
face detection above the current value of 0.6 thus increasing
the specificity of detections ignoring periods of occlusion.

The figure also demonstrates the aggregate statistics from
the datasets used to create RT-GENE and RT-BENE along-
side. The distributions of blinks and gaze data are similar
across the patients and the dataset indicating likely accurate
acquisition.

The questionnaire outlined in Table [[ was conducted on
11 nursing staff, all of whom reported "No" to every question
indicating the acceptability of the system in clinical practice.

VI. CONCLUSION

Delirium is a common occurrence in ICU with tests
that are laborious or too restricted. Eye-tracking has been
suggested to diagnose inattention as a surrogate marker of
delirium but to date, no system has met the requirements
to be suitable for use in ICU. We thus developed a system
that meets empiric and measured criteria as being non-
invasive, calibration-free and exceeds the required accuracy
and precision all while running on commercially available
hardware.

Future work will focus on the use of the signals acquired
by this system to automate the diagnosis of delirium.
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