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Abstract— Muscle fatigue is usually defined as a decrease
in the ability to produce force. The surface electromyography
(sEMG) signals have been widely used to provide information
about muscle activities including detecting muscle fatigue by
various data-driven techniques such as machine learning and
statistical approaches. However, it is well-known that sEMG
signals are weak signals (low amplitude of the signals) with a
low signal-to-noise ratio, data-driven techniques cannot work
well when the quality of the data is poor. In particular, the
existing methods are unable to detect muscle fatigue coming
from static poses. This work exploits the concept of weak
monotonicity, which has been observed in the process of
fatigue, to robustly detect muscle fatigue in the presence of
measurement noises and human variations. Such a population
trend methodology has shown its potential in muscle fatigue
detection as demonstrated by the experiment of a static pose.

I. INTRODUCTION
Muscle fatigue is the failure of a muscle to generate

expected force [1]. Normally, it can be a result of vigorous
exercise, exhaustive labor, or holding static postures for a
prolonged period. Fatigue is also one of the most common
causes of chronic pain [2]. Every year, millions of people
worldwide suffer from chronic pain. Hence, a system that
detects muscle fatigue followed by an appropriate interven-
tion can greatly reduce the risk of chronic pain.

Surface electromyography (sEMG) can be used to detect
muscle fatigue [3]. It has been observed that the frequency
spectrum of sEMG signal will downshift when a muscle
becomes fatigued [4]. Many signal processing techniques
have been proposed to detect muscle fatigue, for example
statistical methods [5] and unsupervised machine learning
[6]. It is not surprising that the performance of signal
processing depends on the quality of signals. Due to the low
signal-to-noise ratio (SNR) of sEMG signals [7] and large
human variations, the existing methods can easily detect the
muscle fatigue coming from dynamic movements when the
subjects already feel exhausted in the experiments. However,
the existing techniques cannot work well in detecting muscle
fatigue from static poor posture. It is reported that poor
posture presents emerging health risks [8].

Although, recent investigations in [9] have shown that
upper-back muscles will indeed fatigue even after sitting with
poor posture for only 15 minutes by statistically analyzing
experimental results of a population, there is still no system-
atic way to capture muscle fatigue from static poses using
sEMG signals for each individual.
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It has been observed that the downshift of the median
frequency of sEMG signals can be used to detect muscle
fatigue [10]. It suggests that a muscle fatigue has a a popu-
lation trend, which can be used in muscle fatigue detection,
and lead to the threshold-based detection algorithm [11].
Due to the low SNR properties of sEMG and the existence
huge human variations, the population trend might not be
always dominant or clearly to be observed, leading to the
concept of weak monotonicity (WM) [12]. This work utilizes
the concept of WM to develop a novel fatigue detection
algorithm to capture upper-back muscle fatigue during a
short-duration poor posture. In order to validate the effec-
tiveness of the proposed algorithm, two set of experiments
have been conducted. Experiment 1 collected sEMG signals
when subjects were required to sit in a poor posture for 15
minutes while Experiment 2 worked with clinicians to detect
muscle fatigue when subjects were sitting in the same poor
posture. The data collected in the Experiment 1 was used to
tune the parameters of proposed WM-based muscle fatigue
detection while Experiment 2 was used to demonstrate the
effectiveness of the proposed method.

II. METHODS

Detecting muscle fatigue coming from long time static
poses using sEMG signals is difficult, because of the ex-
istence of noise and human variations. Hence, traditional
statistical methods are not sensitive enough to capture muscle
fatigue for each individual. Instead of only using measured
data, the population trend observed in muscle fatigue pro-
cesses can be employed to detect muscle fatigue. This work
focuses on weak monotonicity, which is a kind of robust
population trend in the presence of measurement noises and
human variations.

For one measured sEMG signal of a subject during static
sitting at time t, it is denoted as x(t). The signal will be
pre-processed (e.g. filtering, de-trending) and segmented as:

sTj (ti) = ϕ(ti, xTj (ti)), ∀t ∈ [ti, ti+1), (1)

where ti = T×i is the ith sampling instant, T is the sampling
time, and [Tj−1, Tj ], j = 1, 2, · · · , N , is the time interval of
the jth data segment with starting time of Tj−1 and ending
time of Tj . Here ϕ(·) represents an operator to pre-process
the sEMG signal.

This leads to a set of features that can be derived from each
data segment. As demonstrated in [1], we are particularly
interested in frequency domain features as the population
trend is identified in frequency domain.

F (Tj) = φ(f,F(sTj (ti))), f0 ≤ f ≤ fs, (2)

where F(·) is an operator to transform a continuous-time
signal to a frequency domain signal, f is the instantaneous
frequency, and [f0, fs] is the frequency range of interests.
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In the context of sEMG signals, f0 can take 10 ∼ 20
Hz [13], and fs is around 150 Hz [14]. The operator φ(·)
maps a frequency-dependent signal of the segmentation to
a frequency-invariant feature value. For example, it can
represent the calculation of the mean or median values from
frequency-domain signal.

With calculating features for each data segment, the cor-
responding point for the jth data segment J(Tj) = {F (Tj)}
is obtained in order to compute the trend to indicate muscle
fatigue. Traditionally, a threshold is used to detect the muscle
fatigue, that is,

σ(Tj , J(Tj), θ) ∈ {0, 1} (3)

where σ(·, ·, ·) is an operator to calculate the threshold of
the trajectory where θ is the threshold. For example, when
the downshift of the median frequency of sEMG signals is
larger than a given threshold θ, σ(Tj , J(Tj), θ) becomes “1”,
indicating the trigger of muscle fatigue. When it is smaller
than the threshold θ, σ(Tj , J(Tj), θ) becomes “0”.

However, the trajectory of J(Tj) may be affected by
measurement noise and variations, making it less sensitive
to detect the muscle fatigue coming from static poses.

Next, the weak monotonicity (WM) is used to characterize
the robust trend. For the calculated trajectory F (Tj), the WM
is defined if the following inequality is satisfied [12],

F (Tj) ≤ F (Tj−1) + δ(Tj−1), (4)

where |δ(Tj−1)| ≤ ∆. Here δ(Tj−1) represents the fluctua-
tion of trend due to measurement noises and human variation
and ∆ is the WM bound determined by a user-defined
variation rate ∆r, which links to the variation of the data.

With the definition of WM using inequality (4), for the
trajectory with a decreasing trend, the positive and negative
sets of the the trajectory can be calculated as follows,
DWm− = {F (Tj)

∣∣ F (Tj) ≤ F (Tj−1) + δ(Tj−1),

∀ Tj > Tj−1},
DWm+ = {F (Tj)

∣∣ F (Tj) /∈ DWm−},
(5)

Then, the number of data points in each of the two datasets
DWm+ and DWm− can be calculated as,{

sWm+ = Cardi(DWm+),

sWm− = Cardi(DWm−),
(6)

where Cardi(·) is an operator to calculate the number of
data points in the dataset, sWm+ and sWm− are the number
of elements in the two sets. The WM value of a F (Tj) can
be calculated as:

WM =
sWm+

n− 1
− sWm−

n− 1
, (7)

where sWm+ is the number of positive increasing data
points, sWm− is the number of negative decreasing data
points, and n is the total number of data points in the dataset.

The final WM value is between −1 and 1, where WM
value close to −1 means the trend is more monotone
decreasing, and WM value close to 0 means the trend is less
apparent. Similar to (3), we can use an appropriate threshold
to detect muscle fatigue.

As a special case, the following algorithm is used to design
σ(·, ·, ·): {

F (Tj)(1−∆r) ≤ Fint − Fth,

WM(Tj) ≤WMth,
, (8)

where ∆r is the WM bound variation rate, Fint is the fre-
quency at the beginning of the trajectory, Fth is the frequency
shift threshold, WM(Tj) is the WM value obtained at the
same time point, and WMth is the WM value threshold.

The frequency shift baseline Fint is calculated as the mean
median frequency (MMF) at the beginning of the frequency
trajectory. The downshift of the median frequency can be
estimated by observing the trajectory. Then, Fth is set as
1.25 Hz for poor posture sitting to fit the data collected in
Experiment 1 in the designed algorithm.

The proposed detection algorithm selects the WM bound
variation rate ∆r as 0.0083 for poor posture sitting by fitting
the data collected in Experiment 1. Our future work will fo-
cus on systematically selecting WM bound to ensure that the
proposed WM-based detection algorithm can achieve good
performance in the presence of knowledge of measurement
noises and human variations.

The WM value threshold WMth is triggered by a WM
value which is lower than −0.5. Given that a WM value
can reveal the trend of median frequency trajectory, this
threshold is introduced because a WM value lower than −0.5
ensures that the frequency trajectory is keeping a decreasing
trend whilst allowing the existence of the fluctuations of
the trajectory caused by human variations and measurement
noises.

III. EXPERIMENT AND SIGNAL PROCESSING

As indicated in Introduction, two set of experiments were
conducted. Experiment 1 is served as a training set to
train the tuning parameters of the WM-based muscle fatigue
detection. Experiment 2 is served as the testing set to test the
performance of the proposed algorithm using new subjects
and the expertise of the physiotherapist. Two experiments had
the same set-up, procedure, signal processing technique, and
requirement. In Experiment 2, an experienced physiothera-
pist was recruited to evaluate muscle condition every three
minutes from the beginning of each trial. Given that muscle
fatigue is when the maximum voluntary contraction force
is induced [15], the physiotherapist used a 3-point scale (0-
no stiffness, 1-moderate stiffness, 2-hard stiffness) to assess
muscle fatigue.

A. Subjects
Experiment 1: Sixteen healthy male subjects and one female
subject were recruited for the experiment. For two of them,
the data were invalid because the looseness of sEMG sensors
during the experiment. The characteristic information of the
remaining fifteen subjects is shown in Table I.
Experiment 2: 6 healthy male subjects were recruited in the
experiment (Participant 16 - Participant 21). In addition, an
experienced physiotherapist was recruited to evaluate muscle
condition every three minutes from the beginning of each
trial.

In both experiments, informed written consent was ob-
tained from each subject before the experiment. The project
was approved by the Human Research Ethics Committee of
the University of Melbourne with ID #1954575.

TABLE I: Characteristic information of subjects

Maximum Minimum Median Mean ± SD
Age (y) 29 20 23 23.93 ± 2.55

Height (cm) 195 168 180 179.87 ± 7.38
Weight (kg) 115 66 77.5 82.10 ± 14.65



B. Experimental Setup
In both Experiment 1 and Experiment 2, the subjects

were required to keep sitting in a poor posture, which is
shown in Fig. 1(a) for 15 minutes. The poor posture is a
forward head and rounded shoulder posture comparing to the
natural posture as Fig. 1(b) shows. During the experiment,
eight sEMG sensors (DELSYS Trigno Biofeedback System,
DELSYS Inc., USA) were placed on upper back muscles
demonstrated in Fig. 1(c). They are designed to record sEMG
signals from right upper trapezius (sensor #1), left upper
trapezius (sensor #2), right middle trapezius (sensor #3), left
middle trapezius (sensor #4), right lower trapezius (sensor
#5), left lower trapezius (sensor #6), right infraspinatus
(sensor #7) and left infraspinatus (sensor #8) respectively.

C. sEMG Signal Processing
The raw sEMG signal is sampled with 2148 Hz during

data collection. The outliers which are defined as the values
outside three standard deviations from the mean are removed.
Then the sEMG signals are filtered by the 6th order Butter-
worth band-pass filter with the effective frequency range of
sEMG signals 10 Hz to 500 Hz, and a 2nd order Butterworth
band-stop filter with cutoff frequencies 49 Hz and 51 Hz to
remove the power frequency noise. Fig. 2 demonstrates the
original raw sEMG signal and the pre-processed signal.

Wavelet analysis is applied to analyse the pre-processed
sEMG signals, and decompose the signals into 64 frequency
bands with a frequency interval 16.78 Hz. Specifically,
Daubechies wavelet (db14), Symlet wavelet (sym7) and
Coiflets wavelet (coif2) are used. Then, the analysis of
variance (ANOVA) function is used to obtain p-values of
the median frequencies of sEMG signals at the 1st, 7th and
14th minute, representing the beginning, middle and end of
the duration of sitting in a poor posture. A p-value less than
0.05 is considered statistically significant. Such information
can be employed to figure out which muscle is sensitive to
the muscle fatigue during this static pose when analysing
the data. As a result, the frequency band #5 of the left upper
trapezius (sensor #2) has a p-value 0.044 when analysing
with the Daubechies wavelet (db14), which is employed for
muscle fatigue detection algorithm development in this study.

IV. RESULTS

A. Proposed WM-Based Algorithm Tuned from Data Col-
lected from Experiment 1

The developed WM-based fatigue detection algorithm
was extracted from and applied to total 15 subjects during
their sitting in a poor posture. The proposed method is

(a) (b) (c)

Fig. 1: Experimental setup of static poses. (a) poor posture.
(b) natural posture. (c) placement of sEMG sensors.

Fig. 2: sEMG signal pre-processing.

compared to the conventional threshold-based method, where
the threshold is obtained as median frequency decline of
1.25 Hz. Case 1 shows that the WM-based method is more
sensitive to successfully detect muscle fatigue for static poses
compared with the traditional method. The result in Table II
shows that the WM-based method can detect muscle fatigue
of 14 subjects while the conventional method can only detect
6 subjects. Fig. 3(a) shows a representative example that
muscle fatigue is detected by the WM-based method at 5.5
minutes but cannot be detected by the conventional method.

Case 2 is defined for the subjects in the experiment
whose muscle fatigue can be identified from both WM-based
method and conventional threshold-based method. We use
the time when fatigue is detected as the performance index to
check the effectiveness. For convenience of notation, T t

WM
and T t

Th are denoted for the time instant when muscle fatigue
is detected. If T t

WM < T t
Th, the index Pc = 1; and Pc = −1

when T t
WM ≥ T t

Th.
As shown in Table II, the WM-based method can detect

muscle fatigue much earlier. Fig. 3(b) presents a representa-
tive example that the WM-based method detected the muscle
fatigue at 4 minutes comparing with the conventional method
at 6.5 minutes.

B. Validation through Experiment 2
The WM-based algorithm is able to detect muscle fatigue

for all 6 subjects in the algorithm verification experiment
which is shown in Fig. 4. In the figure, the step signal is the
stiffness score obtained by an experienced physiotherapist,
and used as a baseline to indicate the muscle fatigue. It
can be seen from Fig. 4 that the fatigue can be efficiently
captured by the WM-based method before the hard stiffness
of muscle condition happens for 5 subjects, which indicates
the WM-based method can provide leading time detection of
the muscle fatigue. Table II presents the comparison results
of the two methods on detecting muscle fatigue, it can be
seen from Table II that the proposed algorithm has a leading

(a) (b)

Fig. 3: Representative examples of fatigue detection results.
(a) Case 1. (b) Case 2.



Fig. 4: Validation results for Experiment 2

detection time compared to the conventional threshold-based
method.

V. DISCUSSION

The comparison results show that both the WM-based
method and the conventional method are able to detect mus-
cle fatigue for a number of subjects. However, the WM-based
method can successfully detect 8 more subjects out of 15 in
Experiment 1 and 5 more subjects out of 6 in Experiment 2
than the convention method. These results indicate that the
WM-based method is more robust in detecting muscle fatigue
during static poses though there are measurement noises and
human variations at all median frequency trajectories.

At the same time, the WM-based method can detect
muscle fatigue much earlier than the conventional method.
The early detection is important for the prevention and
prediction analysis because it allows time to prevent muscle
injury caused by chronic and excessive muscle fatigue.

It is also noted that there is one subject whose muscle
fatigue cannot be detected by neither the WM-based method
nor the conventional method in Experiment 1. This might
come from large human variations. In particular, this subject
felt more comfortable in the poor posture, suggesting that the
definition of poor posture is subject-related. How to define

TABLE II: Comparison results between the two methods

Experiment Categories WM-based
method

Conventional
method

Experiment 1 Case 1 14/15 (93.3%) 6/15 (40%)
Case 2 Pc = 1 5/6 (83.3%) -

Experiment 2 Case 1 6/6 (100%) 1/6 (16.7%)
Case 2 Pc = 1 1/1 (100%) -

the personalized poor posture is very challenging. Our future
work will focus on it.

There are also some limitations in this study. Firstly,
the muscle fatigue during natural posture is not measured.
The experiment set-up was based on the experience of the
physiotherapist, indicating that subjects will fatigue when
they are sitting in a given (well-known) poor posture for 15
minutes. The data from male subjects is used for convenience
of taking measurements, which leads to the limited validity
of the proposed fatigue detection algorithm.

VI. CONCLUSION

A novel fatigue detection algorithm for upper-back muscle
fatigue during a short-duration poor posture was proposed,
based on the population trend observed in the muscle fatigue
procedure in term of median frequency trend of sEMG
signals. The concept of weak monotonicity (WM), which is a
robust population trend, is thus utilized to detect the muscle
fatigue in the presence of measurement noises and human
variations. The experimental results show that the WM-based
detection algorithm is more sensitive in successfully detect-
ing muscle fatigue with the possibility of early detection.
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