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Abstract— The ability to predict a driver’s reaction time to
road events could be used in driver safety assistance systems,
allowing for autonomous control when a driver may be about to
react with sup-optimal performance. In this paper, we evaluate a
number of machine learning and feature engineering strategies
that we use to predict the reaction time(s) of 24 drivers to
road events using EEG (Electroencephalography) captured in
an immersive driving simulator. Subject-independent models
are trained and evaluated using EEG features extracted from
time periods that precede the road events that we predict the
reaction times for. Our paper has two contributions: 1) we
predict the reaction times corresponding to individual road
events using EEG spectral features from a time period before
the onset of the road event, i.e. we take EEG data from 2
seconds before the event, and 2) we predict whether a subject
will be a slow or fast responder compared to other drivers.

I. INTRODUCTION

Mental fatigue and drowsiness are the main causes of
road accidents worldwide [1], and are often the result of
sleep deprivation and/or focusing on a task for a long period
of time [2]. Similarly, slow reaction times to events on
the road can be a direct consequence of driver drowsiness
[3], and can lead to fatal road accidents. Moreover, mental
fatigue can result in unsafe practices and poor performance
in occupations requiring prolonged operator attention e.g.
for crane operators [4]. Mental fatigue and drowsiness can
be measured in different ways such as using psychometric
questionnaires [5] or vigilance tests like the Psycho-motor
Vigilance Test [6]. A major drawback of these methods is
that they are intrusive on the attention of an operator and
hence cannot be used in real time to measure the drowsiness
of a driver. Therefore, other passive sensing techniques are
generally preferred for measuring drowsiness, including
measuring heart rate [7], increases or decreases in pupil size
[8], and changes in eye blink rate [9]. Among the available
passive methods, EEG can measure neurophysiological
function, and hence may be a more reliable method to
obtain measures of fatigue, and importantly, the moment-to-
moment variations that correlate with reaction times to road
events. The correlation between mental fatigue and EEG
spectral features has been established in different studies
[10][11][12].
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In this paper, we use a publicly available dataset [13] that
contains EEG data from 27 subjects recorded while they
completed driving sessions in a 4-lane simulated environ-
ment. We extend the idea of measuring driver reaction time,
to detecting ahead of time the reaction time of drivers to
events on the road. We train a number of subject-independent
models on frequency-power features extracted from the EEG
data from a 2-second period before the road event, and
evaluate each model using an independent subject’s EEG
data. Consequently, training and testing are done on separate
subjects in order to mimic a more real world scenario where
training data may not be available for an individual subject.
We show that our models are able to predict both individual
trial-level response times and the average reaction time for
subjects.

II. LITERATURE REVIEW

To date, a number of studies have investigated using EEG
measures for tasks such as classification of mental states
[14][15] and detecting mental fatigue of drivers [16][17].

The EEG frequency bands that are noted in the literature
that coincide with mental state activities are the alpha and
theta bands. In a previous study [18], it was shown that in
high attentional demand scenarios, an increase in theta power
along with a decrease in alpha power is observed. In another
study [19], it was found that an increase in lower alpha was
observed when subjects were asked to remain awake while
they were sleepy. When subjects were allowed to sleep a
decrease in alpha and increase in theta power was observed.
This study noted that the alpha band was the most pertinent
band for studying mental state. In another study where the
EEG of industrial workers was investigated [20], it was found
that an increase in alpha power was noticed a few minutes
before sleep, while theta activity increased during sleep.

In [17] three classification strategies for mental fatigue
recognition were evaluated: logistic regression, a transfer
learning-enabled classifier, and a deep-learning based clas-
sifier called EEGNet. The results show that the transfer
learning-enabled classifier outperformed other approaches by
a significant margin.

Many reaction time prediction studies to date have used
EEG data in a subject-dependent manner, where data for a
subject is included as part of the model training process. This
may not be practical for real world drowsiness monitoring
systems however, as a reaction time prediction model would
need to be trained on a per-subject basis. An example of
this is seen in the work reported in [16] where inter-subject
transfer based learning was used to detect mental fatigue.



In their study, they also explored model training using one
channel of EEG compared to multiple channels. A Random
forest was used to select one channel, and this gave better
accuracy for classification. The model achieved an accuracy
of 73.01% and 68% with Maximum Independent Domain
Adoptation (MIDA) for all channels and Transfer Component
Analysis (TCA) for one channel in the occipital region,
respectively.

There has also been research conducted on measuring
driver reaction time in non-computer simulated driving en-
vironments. In one particular study, the authors explored the
relationship between TTC (time to collision) and the reaction
time of the driver [21]. A real world driving task experiment
was conducted where mock pedestrians were intermittently
introduced on the road. Differences in the reaction times of
the drivers for braking, steering the vehicle, and operating
the accelerator pedal were studied. This study confirmed that
there was a linear relationship between a driver’s reaction
time and TTC. TTC is calculated as S/V where S indicates
vehicle distance from pedestrians and V stands for speed
of the vehicle. Also, it was found that drivers have a faster
reaction time when pedestrians come from the right hand
side of the road. The average reaction time for accelerator
pedal operation was 0.6 sec for small TTCs and 3 sec for
long TTC. The reaction time range for braking was 0.65 to
1.6 sec, and for steering ranged from 0.4 to 1.6 sec.

In [15] the authors explored whether dry frontal electrodes
could be used to predict the reaction time of a driver, and
note that using multi channel electrodes may not be suitable
for real time applications. Their study filtered EEG bands
into four frequency bands with a 2 min window centered on
the event onset. Their result showed that there was a positive
correlation with delta band power and a negative correlation
with other band powers.

In summary, alpha and theta bands are shown to be the
most pertinent bands for predicting mental fatigue in drivers.
There have been a few works to date that have focused on
predicting the reaction times of drivers to road events using
EEG measures, hence we explored the utility of alpha and
theta band power measures for this purpose.

III. METHODS

A. Dataset

A publicly available dataset is used in this paper, and
is comprised of 32-channels of Electroencephalography
(EEG) data for 27 subjects driving a vehicle in a simulated
environment on a four-lane highway [13]. The dataset
was collected with approval from the Institutional Review
Board of the Veterans General Hospital, Taipei, Taiwan.
Data collection was performed in strict accordance with
the recommendations in the Guide for the Committee of
Laboratory Care and Use of the National Chiao Tung
University, Taiwan. EEG signals were captured using a
Scan SynAmps2 Express system (Compumedics Ltd.,
VIC, Australia) using Ag/AgCl electrodes with mastoid
references and a 500 Hz sampling rate. The Automatic
Artifact Removal (AAR) plug-in for EEGLAB was used

for data cleaning and correction of common artefacts. EEG
was converted to a common average reference. Multiple
sessions were captured for some subjects. To avoid issues
with information leakage we combine separate session
dataset on a per-subject basis. We discarded datasets for 3
subjects due to anomalous EEG data. In the experiment, the
subjects were instructed to keep driving in the middle of
a highway. Events were induced to deviate the vehicle left
and right (drift) at random intervals. Each random deviation
event subsequently had a deviation onset, a response onset
and response offset. The response onset and offset indicate
when the driver initiated their corrective driving response
to the lane deviation and when it was completed, respectively.

Figure 1 illustrates the behavior of a driver in the simulated
environment. In a 90-min driving task, the road-deviation
events are randomly distributed.

Fig. 1: Illustration of captured driving behaviours in an
immersive driving simulator

B. Feature Extraction

We extracted 2-second EEG epochs across all EEG chan-
nels that directly preceded each road event (deviation onset),
and computed Power Spectral Density (PSD) features using
Welch’s method [22]. PSDs are computed for delta (0.5-
4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (14-20
Hz) bands. The reaction time for each road event (trial) is
computed as the deviation offset minus the deviation onset.
Since we were interested in predicting the subject’s reaction
time before the event, we extracted a 2-second EEG epoch
before the deviation onset. We explored different epoch
lengths that preceded the deviation events, and found 2-
second epochs to be optimal.

C. Subject-independent Analysis / Machine Learning

Our analysis was subject-independent which means that
the training and testing data sets were kept independent.
We used a leave-one-subject-out validation approach, hence
for each of the 24 subject’s trials, we trained a model on
the other 23 subjects and benchmarked this trained model
on that subject’s independent data i.e. we trained the same
number of machine learning models as the subjects. Mean
Absolute Error (MAE) was used to asses performance i.e.
how well we can predict reaction time (deviation offset -
deviation onset) for the road events. We employed a number
of classical machine learning approaches [23], specifically
we used Bayesian Ridge Regression and Artificial Neural
Networks (ANN). We used the default parameters for the



Bayesian Ridge algorithm. For ANN, we used the following
hyperparameters: the activation function used was ReLU, we
kept the maximum number of iterations to 300, the learning
rate was set at 0.001, and we selected Nesterov momentum.

D. Results and Baseline Comparison

We used a dummy regressor as a baseline for each subject,
that calculates MAE using the average of the reaction times
of the independent subjects. As can be seen from Table I, in
all of the four frequency bands, both of the machine learning
approaches have performed better than the dummy regressor.
Only in the case of beta PSD features, Bayesian Ridge had an
almost a similar performance to that of the ANN approach.

TABLE I: Aggregate Mean Absolute Errors Across Subjects

Bands Bayesian Ridge ANN Dummy
Alpha 0.53 (std: 0.25) 0.51 (std: 0.23) 0.58 (std: 0.27)
Theta 0.55 (std: 0.32) 0.54 (std: 0.29) 0.58 (std: 0.27)
Beta 0.58 (std: 0.26) 0.59 (std: 0.26) 0.58 (std: 0.27)
Delta 0.57 (std: 0.27) 0.54 (std: 0.26) 0.58 (std: 0.27)

In Figure 2 we show box plots illustrating the performance
of PSD features used in conjunction with our ML approaches
for alpha, theta, delta and beta frequency bands compared
to a dummy classifier across subjects. Notably, the median
value of MAE for each band is lower than that of the
dummy. In particular, we are interested in MAEs for alpha
and theta since these two bands are typically associated
with attention-related mental activity [18] [20] [19]. As eye
movement artefacts had already been removed from the data,
unsurprisingly the results for delta are comparatively worse
than alpha and theta band features. In the box plot, we have
plotted only the best results for each band which means that
three of the results are from ANN regression, and one from
Bayesian Ridge Regression.

Fig. 2: Comparison of MAEs for different frequency bands

In Table II we show the per-subject MAE results for alpha
and theta band features when used to predict reaction time
using the ANN regressor. Columns ’N’ and ’RT’ show the
number of events (for each subject) and the averaged reaction

TABLE II: Subject-independent Prediction Results

Sub N alpha alpha theta theta RT dummy
corr MAE corr MAE MAE

1 780 0.04 0.45 0.05 0.49 1.24 0.38
2 673 0.12** 0.31 0.10** 0.36 0.78 0.49
3 356 0.40** 0.77 0.29** 0.83 1.53 0.89
4 1356 0.33** 0.64 0.18** 0.68 1.15 0.55
5 355 0.34** 0.48 0.31** 0.43 1.13 0.43
6 617 0.06 0.48 0.07 0.53 1.03 0.51
7 414 0.28** 0.40 0.22** 0.37 0.78 0.59
8 499 0.25** 1.40 0.17** 1.74 2.57 1.73
9 737 0.12** 0.47 0.18** 0.55 0.69 0.60

10 727 0.07* 0.36 0.04 0.22 0.58 0.60
11 1412 0.09** 0.67 0.08** 0.70 1.43 0.67
12 434 0.31** 0.30 0.31** 0.32 1.07 0.32
13 1173 0.11** 0.42 0.12** 0.52 1.40 0.42
14 983 0.20** 0.42 0.27** 0.45 1.00 0.49
15 2031 0.07 0.58 0.37** 0.54 1.30 0.53
16 748 0.29** 0.76 0.35** 0.80 1.86 0.79
17 2234 0.13** 0.58 0.04* 0.69 1.09 0.56
18 330 0.18* 0.36 0.38** 0.35 0.89 0.55
19 1007 0.25** 0.38 0.27** 0.37 0.88 0.49
20 669 0.36** 0.41 0.38** 0.40 1.09 0.40
21 205 0.54** 0.28 0.58** 0.26 0.91 0.50
22 1094 0.16** 0.55 0.06 0.57 1.28 0.56
23 164 0.06 0.63 0.40** 0.45 1.41 0.53
24 637 0.04 0.18 0.02* 0.29 0.71 0.46

time for each subject, respectively. We additionally included
Pearson-r correlation coefficients for predicted vs ground
truth reaction times for each subject, as a trained model may
have correctly predicted the trial-to-trial variation in reaction
times, but may have consistently overestimated or underes-
timated these (by some offset or multiplier). Instances exist
where a model has predicted a subject’s average reaction
better than the dummy regressor, yet has failed to capture the
trial-to-trial variations in reaction times, indicated by a low
correlation coefficient, and relatively lower MAE compared
to the dummy MAE. We have indicated instances where the
two-tailed p-value for the correlation coefficient is below .05
with an asterisk, and used two asterisks where it is below
.01. As can be seen, for the majority of subjects, successful
predictions for driver reaction time can be made on a per-
subject per-trial basis i.e. significantly above chance.

In Figure 3 we show the significant correlative relationship
between the averaged predicted reaction time per subject and
the averaged ground truth reaction time per subject. There
is a significant correlation (Pearson-r: p=0.00008, r=0.71,
N=24) indicating that it is also possible to predict the average
reaction time of a subject i.e. whether they are a fast or slow
responder in terms of reaction time.

Our results are consistent with existing EEG literature.
As can be seen from the results in Table 1, using alpha
and theta band features gives a lower error compared to the
other bands, namely beta and delta i.e. alpha and theta band
features were predictive of the ground truth reaction times.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated whether regression
methods can be used to predict driver reaction time to



Fig. 3: Relationship between ground truth and predicted
reaction times
deviations using EEG PSD features that precede the onset
of the deviation events. We were able to achieve good
results using simple machine learning approaches that use
alpha and theta band features from human EEG. Moreover,
using the same methods and averaging predictions we have
shown it is possible to predict whether a subject is a
slow or fast responder to events on the road. The training
and testing approach in our analysis keeps each subject’s
testing data separate from the training of models by using a
leave-one-subject-out validation approach i.e. we use subject-
independent models. Our contribution in this paper is novel
in that we shown it is possible to use subject-independent
models with EEG features from time periods that preceded
the onset of simulated deviation events, to successfully
predict a person’s reaction times to those events.

Our future work will focus on channel selection,
combining different frequency bands, and placing an
increased emphasis on using deep learning approaches to
further maximize performance. Similarly, we will explore
the temporal aspects of reaction times throughout the driving
sessions as currently we are doing prediction for single
events.
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