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Abstract— Pulmonary Embolism (PE) is a severe medical
condition that can pose a significant risk to life. Traditional
deep learning methods for PE diagnosis are based on Computed
Tomography (CT) images and do not consider the patient’s
clinical context. To make full use of patient’s clinical informa-
tion, this article presents a multimodal fusion model ingesting
Electronic Health Record (EHR) data and CT images for
PE diagnosis. The proposed model is based on multilayer
perception and convolutional neural networks. To remove the
invalid information in the EHR data, the multidimensional
scaling algorithm is performed for feature dimension reduction.
The EHR data and CT images of 600 patients are used for
experiments. The experiment results show that the proposed
models outperform existing methods and the multimodal fusion
model shows better performance than the single-input model.

I. INTRODUCTION

The incidence of Pulmonary Embolism (PE) has been
increasing in recent years. It brings an age-standardized
mortality rate ranging from 0 to 24 deaths per 100 000
population-years [1]. The standard method for PE diagnosis
involves visual inspection of the Computed Tomography
(CT) images [2]. However, with limited healthcare resources
and expensive specialist fees, delays and misdiagnoses of
PE are common [3]. There remains space for improvement
of PEimages diagnosis based on CT imaging.

With the development of Deep Learning (DL) technology,
many models have been built for PE diagnosis based on CT,
showcasing satisfactory results [4], [S], [6]. Although PE
diagnosis by DL leads to reasonable results, it still differs
from radiologists’ clinical, which mainly manifests in the
use of the patient’s clinical context. To be specific, doctors
leverage lab test results, prior diagnosis and disease history
in the Electronic Health Record (EHR) to diagnose PE more
accurately. According to [7], 83% of CT reports become
more accurate when considering full clinical information.
Therefore, combining EHR data and CT images can be a
promising avenue.

Multimodal learning provides a framework to combine
different kinds of medical information for DL based dis-
ease diagnosis. To achieve early detection of Alzheimer’s
disease stage, J. Venugopalan et al. [8] propose a multimodal
DL model to analyze images and clinical data integrally,
showing it outperforms single data modality based models.
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For diabetic kidney disease, the multimodal model based on
EHR data and plasma biomarkers achieves higher prediction
accuracy than the single-input model [9]. See also [10], [11].
However, using multimodal models for PE diagnosis brings
about new challenges due to the 3D nature of CT images.

Multimodal learning has shown satisfying performance in
the medical field, however, there is still much work to be
carried out to apply it in PE diagnosis due to limited open
dataset and the 3D particularity of CT images.

Recently, a team published RadFusion: a multimodal
dataset that includes the EHR data and CT images labeled for
pulmonary embolisms [12]. The team also utilizes 3D Con-
volutional Neural Network (CNN) and ElasticNet to build
the multimodal fusion model for PE diagnosis. However, the
method shows some deficiencies. For example, all features in
the EHR data are involved in the model. In fact, features that
contribute to PE diagnosis are only part of them. The model’s
performance could be affected if unnecessary features are
introduced. In addition, the 3D CNN model requires that the
number of 2D slices in each 3D CT image (equal to the depth
of 3D images) needs to be the same. In fact, the numbers
show huge difference. Therefore, the depth of 3D CT images
is compressed to meet the 3D CNN model requirements,
resulting in a decrease in sample diversity.

Hence, this article proposes a multimodal fusion model
based on Multilayer Perceptron (MLP) and 2D CNN for
PE diagnosis. MLP is commonly utilized for classification
problems with large-scale data due to its advantages like
high degree of parallelism, highly nonlinear global action,
excellent fault tolerance ability and associative memory
function [13]. The depth of the original 3D CT image
will be retained completely in 2D CNN model. Moreover,
the Multidimensional Scaling (MDS) algorithm is applied
to reduce the dimension of EHR data in order to keep
important features. The MDS algorithm does not need prior
knowledge and has high computational efficiency. Compar-
ison experiments on 600 patients’ data from RadFusion
are implemented. Results show that the proposed method
could achieve satisfying performance. The contribution of
this study can be summarized as follows:

1) A high-performance multimodal fusion model based

on MLP-2D CNN is proposed for PE diagnosis.

2) The MDS algorithm is applied to reduce the data

dimension and improve the over-fitting phenomenon.

3) The 2D CNN model is designed to address the issue

that the depth of 3D CT image is compressed in the
3D CNN model.



The rest of this article is organized as follows. Section
Il introduces the proposed method. Section III presents
the experiment and results analysis. Section IV draws the
conclusion.

II. THE PROPOSED METHOD

In this section, the proposed EHR-only model, image-only
model and multimodal fusion model are introduced firstly.
Then, the MDS algorithm is also explained.

A. The proposed models

Firstly, an EHR-only model based on MLP is designed for
PE diagnosis using only EHR data. There are 2912 features
for each patient in the EHR data. To remove unimportant
features, the MDS algorithm is applied to the original data.
Then, to solve the problem that the depth of 3D image will
be compressed in the 3D CNN model, an image-only model
based on 2D CNN is proposed. Finally, these two models
are combined to build the multimodal fusion model. The
structure of the proposed models is shown in Fig. 1.
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Fig. 1. The structure of the proposed models.

It can be seen from Fig. 1 that the EHR-only model and
the image-only model are utilized for processing two kinds
of input firstly. Then, the penultimate layers of two models
are stitched together and input into a new model to build the

multimodal fusion model. These three kinds of models are
introduced next.

1) The EHR-only model: The flow chart of EHR-only
model is shown in the dotted box on the upper left of Fig. 1.
The first step is to screen original EHR data. The empty
columns and outliers are removed. Then, to improve the
convergence rate of the model, all the data are normalized
and scaled to fit the interval [0, 1]. After that, the MDS
algorithm is used to reduce the feature dimension. Based on
the filtered data, the MLP classification model is built for
PE diagnosis. The MLP model utilizes two hidden layers
for features and logical processing and one dropout layer
for reducing the over-fitting problem. The MLP method is
described in [13].

2) The image-only model: The flow chart of the image-
only model is shown in the dotted box on the upper right of
Fig. 1. The CT image for each patient is presented in the 3D
format, which consists of N 2D CT slices (N ranges from 28
to 2600). The depth, width and length of 3D images need
to be unified for a 3D CNN, which means that N will be
changed and the integrity of the samples is compromised.
To solve this problem, a 2D CNN model is designed. In
this model, the input is 395872 2D CT slices instead of
1112 3D CT images. Hence, the first step is to split 3D
CT Images into 2D CT images and expand labels. Then,
the image size and pixel normalization are carried out. For
the 2D CNN model, it only needs to unify the width and
length for all images. All pixels are scaled to fit the interval
[0, 1] for normalization, which can accelerate the model
convergence rate. After that, the dimension of all images
is adjusted to facilitate the convolution operation. Finally,
the classification model based on 2D CNN is built and
trained for PE diagnosis. The 2D CNN model utilizes two
convolution layers for feature extraction and two pooling
layers for feature dimension reduction.

3) The multimodal fusion model: To make full use of
patients’ clinical information, the multimodal fusion model
is built by combining EHR-only model and image-only
model together. The last layers of the EHR-only model and
the image-only model are used to map model tensors to
the labels. In the multimodal fusion model, the last layers
of them are skipped and the penultimate layers of two
models are stitched together to create a new tensor. The
new tensor is fed into subsequent neural network layers for
classification, which realizes the prediction by multimodal
fusion information.

B. The MDS algorithm

The MDS algorithm aims to map the high-dimensional
data to the low-dimensional data on the premise that the
distance between the samples in original space and new space
is consistent. Suppose there are m samples with d dimensions
and the target dimension is d’.

The original sample space is expressed as

,z; € R (1)

T = {.Il,l'g,"' axm,}



Let matrix D represents the distance between original
samples. dist;; is the element in D and refers to the distance
between x; and x;. The goal of the MDS algorithm is to
get the new samples Z € R&xm ' < . The distance
between the two samples remains unchanged after mapping,
which means ||z; — z;|| = dist;;. Let B = Z1Z € R™*™,
where B is the inner product matrix of new samples and
bi; = 2] zj. The relationship between dist;; and B is

disty; = ||zl + 12 )1* — 227 2z = bis + bjj — 2bij. (2)

Z is commonly centralized so that » .- 2; = 0 and
ity big =300 by = 0.

Let dist? = =", dist?;, dist’; = =~ Y7 dist?; and
dist? = L 37" YT dist?;, the element in B can be
expressed as

1
bij =—3 (dist}; — dist] — dist’; + dist®) . (3)

Since B is a symmetric matrix, the eigendecomposition of
B can be obtained by

B=VAVT, 4)

where A = diag (A1, A2, -+ ,Ag), A1 > Ao > -+ > Ay and
V is the corresponding eigenvector matrix. Suppose there are
d* nonzero eigenvalues and V, is the eigenvector matrix, the
objective Z is expressed as

1 *
7 :Af‘/*T c Rd ><77L. (5)

III. EXPERIMENTS

Three kinds of experiments are implemented to evaluate
the performance of proposed models. The comparative meth-
ods and the dataset are derived from the novel study [12].

1) For the EHR-only model, we first compared different
values of the target dimension of the MDS algorithm.
Then, we evaluate the performance of the proposed
MLP model with the ElasticNet model.

2) For the image-only model, we evaluate the perfor-
mance of the proposed 2D CNN model with the 3D
CNN model.

3) For the multimodal fusion model, we evaluate the
performance of the proposed MLP-2D CNN model
with the ElasticNet-3D CNN model.

The software and hardware platforms involved in experi-
ments are shown in Table L.

TABLE I
THE EXPERIMENT ENVIRONMENT.

Model/version
CentOS 8.0
NVIDIA Tesla A100
AMD EPYC 7543
Tensorflow 2.4

Software/ hardware

Operation system
GPU
CPU
Model framework

A. The dataset

The dataset consists of three parts: the EHR data, CT
images and the label. The content and structure of the data
is described next.

1) The EHR data: The EHR dataset is presented as a list.
The vertical index of the list is the identification code of
patients. The horizontal indices of the list are 2912 features
of patients. These features include

o Demographic features

Demographic features consist of one-hot encoded gen-
der, race, smoking habits and age.

o Vitals

Vitals include systolic and diastolic blood pressure,
height, weight, body mass index, temperature, respira-
tion rate, pulse oximetry and heart rate.

« Inpatient and outpatient medications

641 unique classes of drugs are identified for inpatient
and outpatient medication. For each medication, the
intake frequency and a label of whether the patient takes
it are presented.

« Diagnosis code

141 unique diagnosis groupings are given. For each
grouping, there is a binary label indicating the presence/
absence of the corresponding condition.

o Laboratory tests

22 categories are generated for all laboratory tests.
Similarly, a binary label is used to present the presence/
absence of the test.

2) The CT images: The CT images are presented as
separate files with .npy format. For each patient, the CT
images data consist of N 2D-CT slices (N ranges from 28 to
2600). Each slice has 1 channel with the gray color type and
the size is 512*512 pixels. The total number of all slices is
395872.

3) The label: The label is presented as a list. For each
patient, the label is given as 0 or 1. O refers to negative
PE and 1 indicates positive PE. All labels are generated by
manual review by three board-certified radiologists.

B. Experiments with EHR-only model

As mentioned before, the original EHR data contain 2912
features. After screening the data, 1286 features are selected
as the input of the EHR-only model. The MDS algorithm is
performed then. During this process, the value of the target
dimension of the MDS algorithm is set to be 1000, 500, 200,
100, 50, 20, 10, 5 and 2 for the experiment. 600 patients are
selected for the experiment and they are split into three parts
randomly: 120 patients to be the test data, 384 patients to
be the train data and 96 patients to be the validation data.
The evaluation indices are the accuracy, F1 score and the
training time. Among these indices, accuracy refers to the
proportion of the samples that receive the correct prediction.
F1 score is the harmonic mean of precision and recall rate.
F1 score is positively correlated with the model performance.
The experimental results are shown in Table II.

It can be seen from Table II that if all the features are input
into the model, it only achieves the accuracy of 52%, which



TABLE I
THE EXPERIMENT RESULT OF THE MDS ALGORITHM.

The value of Computing time

No. . . Accuracy  F1 score .

target dimension / min

1 Without MDS 52.2% 0.494 10.2
2 1000 54.1% 0.513 9.1
3 500 54.4% 0.526 8.3
4 200 58.3% 0.541 6.9
5 100 57.7% 0.543 6.0
6 50 62.3% 0.614 5.5
7 20 66.5% 0.597 5.1
8 10 66.8% 0.647 4.4
9 5 69.2% 0.665 4.1
10 2 66.7% 0.634 4.0

is approximate to the random guess. When the dimension of
EHR data is continuously reduced by the MDS algorithm,
the accuracy and F1 score keep increasing and they reach
the maximum values when the target dimension is 5. The
accuracy is increased by 27.8% and the F1 score is increased
by 28.3%. Moreover, the training time also reduces gradually.
Therefore, the target dimension of the MDS algorithm will be
set as 5 in the subsequent experiments. The training process
of these experiments are also recorded and the training
history of No. 1 experiment and No. 10 experiment is shown
in Fig. 2.

It can be seen from Fig. 2 (a) that the valloss keeps
increasing and the train_loss shows the opposite trend when
all the features are involved in the training process, which
means the serious over-fitting phenomenon happens. The
problem is solved by removing unimportant features and the
val_loss and train_loss present a normal trend in Fig. 2 (b).
After determining the target dimension value of the MDS
algorithm, the experiment for comparing the performance of
the ElasticNet with the MLP model is implemented. The
experiment result is shown in Table III.

TABLE 111
THE EXPERIMENT RESULT OF EHR-ONLY MODELS.

Training time

Model name  Accuracy  F1 score

/ min
ElasticNet 66.6% 0.652 7.2
MLP 69.2% 0.695 4.1

It can be seen from Table III that the proposed MLP model
achieves the higher accuracy and F1 score compared to
the ElasticNet model. Specifically, the accuracy is increased
by 4.0% and the F1 score is increased by 6.6%. What’s
more, the training time is reduced significantly by 75.6%. In
summary, the feature dimension reduction is vital in dealing
with EHR data and can significantly improve the over-
fitting phenomenon as well as the computational efficiency.
Although the proposed EHR-only model based on MLP has
higher accuracy and F1 score than the existing method, it
can not be used alone for PE diagnosis.
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Fig. 2. The training record of No. 1 experiment and No. 10 experiment.
(a) The training record of No. 1 experiment. (b) The training record of No.
10 experiment.

C. Experiment with image-only model

The 2D CNN model and the 3D CNN model are compared
in this experiment. The evaluation indices are accuracy, F1
score and the training time. For the 3D CNN model, the
size of each patient’s 3D image is unified to 356%256*256
(depth*width*length) to minimize the loss of sample diver-
sity (356 is the average of all 2D slices). The image size for
the 2D CNN model is set to be 256%256 (width*length). The
data partitioning method is the same as before: 120 patients
to be the test data, 384 patients to be the train data and 96
patients to be the validation data. The experimental results
are shown in Table IV.

TABLE IV
THE EXPERIMENT RESULT OF IMAGE-ONLY MODELS.

Training time

Model name  Accuracy  F1 score .
/ min
3D CNN 78.6% 0.802 275.1
2D CNN 95.3% 0.948 95.7

It can be seen in Table IV that the 2D CNN model can
achieve higher accuracy, F1 score than the 3D CNN model.



Specifically, the accuracy is increased by 21.2% and the F1
score is increased by 18.2%. This phenomenon may be due
to that the diversity of 3D CNN model samples is affected
by unifying depth. In addition, the process of unifying depth
requires complex calculation, which results in much longer
training time.

D. The experiment of the multimodal fusion model

In this experiment, the performance of the MLP-2D CNN
model and the ElasticNet-3D CNN model is compared. The
evaluation indices are accuracy, F1 score and the training
time. The data are divided as same as before: 120 patients are
the test data, 384 patients are the train data and 96 patients
are the validation data. The experimental results are shown
in Table V.

TABLE V
THE EXPERIMENT RESULT OF IMAGE-ONLY MODELS.

Training time

Model name Accuracy  F1 score X
/ min
ElasticNet-3D CNN 92.4% 0.897 320.2
MLP-2D CNN 97.3% 0.964 101.6

It can be seen from Table V that the accuracy and the F1
score of the MLP-2D CNN model has different degrees of
improvement than the ElasticNet-3D CNN model, 5.3% and
7.5%. In addition, the computational efficiency of the MLP-
2D CNN is significantly improved. The time consumption is
215.2% lower than the ElasticNet-3D CNN model. To get
a more intuitive comparison, the indices of all models are
shown in Table VL.

TABLE VI
THE INDICES OF ALL MODELS.

Training
Model type Model name Accuracy FI1 score . Idmm%
time / min
EHR-only MLP 69.2% 0.695 4.1
EHR-only  ElasticNet  66.6% 0.652 7.2
Image-only 2D CNN 95.3% 0.948 95.7
Image-only 3D CNN 78.6% 0.802 275.1
Multimodal MLP-
7. .964 101.
fusion 2D CNN 97.3% 0-96 016
Multimodal  ElasticNet-
92.4 0.897 320.2
fusion 3D CNN 7

It can also be seen from Table VI that the proposed
MLP-2D CNN model achieves the highest accuracy and F1
score among three kinds of models. In addition, the two
multimodal fusion models both have the higher accuracy and
F1 score than their constituent models.

IV. CONCLUSION

To combine the EHR data and CT images for PE diagno-
sis, this article designs three kinds of model: the EHR-Only
model based on MLP, the image-Only model based on 2D
CNN and the multimodal model based on MLP-2D CNN.
The MDS algorithm is applied to remove redundant features

in EHR data. EHR data and CT images of 600 patients are
involved to evaluate the proposed models. At the same time,
the ElasticNet model, the 3D CNN model and the ElasticNet-
3D CNN model are selected for comparison.

The experiment results show that the MDS algorithm can
effectively solve the over-fitting phenomenon. The proposed
models have better performance than existing methods in
accuracy, F1 score and computational efficiency. The EHR-
Only model, the image-only model and the multimodal
fusion model achieve the accuracy at 69.2%, 95.3% and
97.3%, respectively. Moreover, all the multimodal fusion
models show better performance than corresponding single-
input models. To conclude, combining EHR data and CT
images can be an effective method for PE diagnosis.
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