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Abstract-Transcranial Magnetic Stimulation (TMS) 

combined with EEG recordings (TMS-EEG) has shown great 
potential in the study of the brain and in particular of 
Alzheimer's Disease (AD). In this study, we propose an 
automatic method of determining the duration of TMS- induced 
perturbation of the EEG signal as a potential metric reflecting 
the brain's functional alterations. A preliminary study is 
conducted in patients with Alzheimer's disease (AD). Three 
metrics for characterizing the strength and duration of TMS-
evoked EEG (TEP) activity are proposed and their potential in 
identifying AD patients from healthy controls was 
investigated. A dataset of TMS-EEG recordings from 17 AD and   
17 healthy controls (HC) was used in our analysis. A Random 
Forest classification algorithm was trained on the extracted TEP 
metrics, and its performance is evaluated in a leave-one-
subject-out cross-validation. The created model showed 
promising results in identifying AD patients from HC with an 
accuracy, sensitivity, and specificity of 69.32%, 72.23% and 
66.41 %, respectively. 

 
Clinical relevance- Three preliminary metrics were pro- 

posed to quantify the strength and duration of the response to 
TMS on EEG data. The proposed metrics were successfully used to 
identify Alzheimer's disease patients from healthy controls. 
These results proved the potential of this approach which will 
provide additional diagnostic value. 

 
I. INTRODUCTION 

Transcranial Magnetic Stimulation (TMS) co-registered 
with electroencephalography (EEG) shows great potential in 
the study of the healthy and pathological brain. By inducing a 
strong and focused magnetic field, electrical currents are induced 
into targeted regions of the brain [1]. This in tum creates local 
and global TMS-evoked EEG potentials (TEPs) that allow to 
investigate the reaction of specific brain regions to external 
perturbation [2]. 

There is currently no clear consensus on the methods to be 
used for TEP analysis. Several latencies and polarities have 
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been analyzed with respect to diverse pathologies [3], [4], 
but no consensus exists on when and how long a response to 
TMS is expected. The strength and duration of the response 
to stimulation can be indicative of specific pathologic 
conditions where neuronal pathways and responses are 
altered.  

For instance, Alzheimer 's disease (AD) is a 
neurodegenerative disorder in which aberrant proteins 
accumulate both intra and extracellularly in different regions 
of the brain [5]. This causes altered neuronal behaviors which 
induce changes in brain networks ' dynamics, excitability and 
interneuron communication [6]. Its prevalence worldwide is 
high, and it is expected to double by 2060, while currently 
no effective treatments are available [7]. TMS-EEG can be a 
great tool in the study of this disease as both local and distant, 
network level responses can be analyzed. 

Most works using TMS-EEG to study AD focus on the 
early TEP responses, within l00ms after the stimulation. Little 
information is available on the later TEP responses. A 
common assumption is that the immediate effect of TMS 
perturbation stops roughly after 500ms or even earlier [8]. 
However, TEPs also show high inter-subject variability. We 
assume that the strength and duration of the response is 
different for each subject. Furthermore, we hypothesize that 
the response to stimulation in both strength and duration is 
different between AD patients and healthy controls. 

In this study we aim to: (i) investigate an energy-based 
method of determining the return to baseline after TMS 
stimulation, (ii) propose metrics for quantifying the response to 
stimulation, and (iii) investigate the possibility of classifying AD 
from HC using the proposed metrics. 

This paper is organized as follows.  Section II provides an 
overview of the classification algorithm for identifying AD 
from HC. Section III details the method used for automatically 
determining the time the EEG returns to baseline after 
perturbation, along with other metrics to quantify the 
perturbation strength. Section IV presents and discusses the 
results, and Section V concludes the paper. 

II. METHODS 

An overview of the general framework and steps for 
classifying AD patients from HC is provided in Figure 1. The 
TMS-EEG dataset is pre-processed prior to further analysis. 
Features based on the return to baseline time are extracted for 
each individual trial and averaged over the entire electrode set 
per patient. The obtained values are used as input for 
classification. The created model is in the end evaluated to 
quantify performance. 



 
Fig. 1. Steps in creating a classification model for identifying AD patients from 
HC. 

A. Dataset 
EEG activity from the scalp was collected during a TMS 

protocol with a BrainAmp amplifier (BrainProducts GmbH, 
Munich, Germany). A montage of 64 TMS-compatible 
Ag/AgCl electrodes was used. A figure of eight coil oriented at 
a 45° angle from the midline was used with a Magstim Rapid 
magnetic biphasic stimulator to apply TMS to the left 
dorsolateral prefrontal cortex. The stimulation intensity was 
determined based on a distance-adjusted motor threshold de- 
pendent on the individual coil-to-cortex distance [9]. Blocks 
of 120 single pulses were applied with an inter-stimulus 
interval of 1 to 4 seconds. 

TMS-EEG data from 17 AD patients  and 17 healthy 
aged-matched controls are used for the experiments. The 
average age of the two groups is 72.35±7.72 and 71.11±6.28 
respectively. All participants were assessed for signs of 
cognitive decline using clinical and neuropsychological data 
based on the latest AD diagnostic criteria [10]. 

The dataset was collected at the Santa Lucia Foundation 
(Rome, Italy). The study was approved by the ethics 
committee of the Santa Lucia Foundation and was conducted 
according to the principles of the Declaration of Helsinki and 
the International Conference on Harmonization of Good 
Clinical Practice. Written consent was obtained from all 
participants, or their legal representatives and they were 
informed participation is voluntary. 

B. EEG Preprocessing 
EEG data collected while apply TMS is subject to multiple 

sources of artefacts. Preprocessing was performed on the data 
to eliminate confounding artefacts (Fig. 1, Step 2) [11]. The 
EEG was segmented 500ms prior and l000ms after the TMS 
pulse. The recording during the TMS pulse was removed and 
a cubic interpolation was performed. A zero-phase 
Butterworth bandpass filter was applied between 1 and 80Hz 
on the data down sampled to 1000Hz. Several independent 
component analyses (ICA) were performed with manual 
selection and removal of remaining interfering factors [12]. 
The electrode channels were re-referenced to the electrode 
average. 

C. Classification and Evaluation 
After preprocessing, features were extracted on individual 

TMS trials (Fig. 1, Step 3). The features extracted were 
exclusively related to the timepoint determined for the EEG 
signal returned to the values from the baseline. These are 
further detailed in Section III. The values obtained are 
averaged over all trials and over all electrodes for each subject 
(Fig. 1, Step 4). The obtained feature set is used  

 

 

as input for creating a classification model to distinguish 
between AD and HC (Step 5). A Random Forest algorithm with 
100 trees and a minimum of 1sample per leaf  was used for 
creating the mode. Random Forest is an ensemble learning 
technique that uses majority voting from multiple decision trees 
to create a final decision on classification. Each decision tree 
receives as input a subpart of the dataset and thus eliminating the 
problem of overfitting in the final model [13]. 

A leave-one-out cross-validation method was used (Fig. 1, 
Step 6). In this method, k-1 subjects are used for training the 
model and the kth subject is used as a test. To account for 
variations in bootstrapping the original data, the algorithm is 
run 100 times and the average result over all runs is reported. 
The metrics defined in equations 1-4 below are used for 
evaluating the performance of the model: 

 
accuracy = (TP+ TN)/ (FP+ FN+ TP+ TN)     (1) 

sensitivity = T P/ (TP + F N)                              (2) 

 specificity = TN/ (TN+ FP)                                   (3) 

F1 score = 2TP/ (2TP+ FP + F N )  (4) 

where TP - true positive, TN - true negative, FP - false positive, FN 
- false negative. 

 
III. DET E RMINING TH E RETURN TO BASE LI N E 

 
A. Signal Energy 

Unlike other event related potentials such as visual or audio 
ERPs that have an expected polarity, amplitude increase or 
decrease at specific latencies after stimulus, the TEP shows a 
high inter-subject variability in the response to TMS 
stimulation both in time and frequency [14]. Several proposals 
for latency-based analysis have been made in literature [3], 
[4]. However, no consensus exists on the type of analysis that 
should be applied to TMS-induced potentials. To overcome this 
shortcoming, metrics such as area under the curve were used 
to quantify the strength of the response to TMS stimulation 
[15]. 

Here, we use signal energy to characterize the EEG 
response to TMS stimulation. The median energy of a signal 
is defined according to equation 5: 
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       (5) 
 

where 𝑥%   is a sample and 𝑁 is the total number of samples in 
the evaluated signal segment. 

Immediately after the TMS pulse is applied, the EEG signal 
energy increases while exhibiting a slower or faster decrease 
over time as the immediate effects of perturbation fade out [8]. 
Our assumption is that the signal energy after TMS decreases 
until the levels observed during baseline are obtained. 
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Fig. 2.  Block diagram of the algorithm automatically determining the return to baseline of the EEG signal after applying TMS. 
 

B. Algorithm proposal 
Our proposal for automatically calculating the time needed 

for the EEG signal to settle back to baseline is based on the 
signal energy levels obtained over the time course of the TEP. 
Figure 2 shows the block diagram of our algorithm proposal. 
Three main blocks are identified as follows: 

1) Extracting the energy signal: The absolute TEP value 
is extracted and normalized with respect to its maximum value 
to have a uniformity in amplitude ranges in-between subjects. 
Next, the energy level of the signal is calculated over a sliding 
window moving sample by sample through the TEP. 
Experiments were performed to evaluate the optimum 
window size. Values for the length of the sliding window 
included 5ms, l0ms, 20ms, 30ms and 40ms. The final 
evaluation was conducted with respect to the maximum 
performance obtained for the classification of AD and HC. 

2) Selecting the response to stimulation: Once the energy 
signal Xe is calculated, the values obtained after the TMS pulse 
are compared to baseline. A threshold is defined as the mean 
value of the energy signal obtained on the baseline data added 
with one standard deviation. Baseline has been considered 
between -500ms and -200ms prior to the pulse. The last 200ms 
prior to the pulse were excluded to avoid the interference of 
residual pre-processing and filtering effects on the baseline data. 
After applying the threshold, a new signal Xe_t h is obtained that 
should be representative of the increase in energy as a response 
to stimulation. The time points where the threshold was crossed 
by Xe are also retained. Several control measures are put in 
place. If less than 5 samples are available in Xe_t h , the 
threshold is lowered to the mean of the baseline to ensure a 
return to baseline value can be calculated. The time interval 
where the return to baseline can occur is limited between 80ms 
and 850ms. The lower bound assumes that there always is a 
response to stimulation until 80ms. The upper bound takes 
into account previous literature where generally the return to 
baseline is considered at approximately 500ms after 
stimulation [8]. 

3) Extracting return to baseline time point:  The differ- 
ence between the timepoints when the energy signal crossed 
the threshold Xdiff is computed. The maxim interval between 
time points is extracted. When the difference between two time 
points of the Xe_th signal is higher than 75% of the maximum of 
Xdiff, it is considered that the signal is settled after the 
perturbation. In our definition, this represents the time 
required for the signal to return to baseline. 

C. Metrics 
Three metrics to characterize the TEP are proposed. These 

are detailed and defined in Table I. Figure 3 also provides a 

Fig.3. Overview of features extracted from the TEP based on the time required 
for the EEG to return to baseline. 

TABLE I 
OVERVIEW OF METRICS USED IN CLASSIFICATION ALONG WITH THEIR 

ABBRE VIATION (ABB.) AND THEIR DEFI N ITION. 

 

Metric Abb. Definition 

Target engagement 
duration index 

TEDI Time required for the signal to return to 
baseline. See Section lll-B 

Engagement decay  
index 

EDI Angle between TEDI and the maximum 
absolute value of the TEP between the 
TMS pulse and TEDI 

Target   engagement TEI Area under the curve of the signal be- 
index  tween the TMS pulse and TEDI 

 
 

graphical view of the metrics and how they are determined 
from an example TEP. The time required for the EEG signal 
to return to baseline after applying TMS can be useful to 
characterize the ability of the brain to recover after 
perturbation, possibly indexing plasticity mechanisms as well.  
However, the return time is not the only indicator of recovery. 
For instance, AD patients have been previously shown to 
exhibit increased excitability [6]. Therefore, the combination 
between the amplitude of the response and the time required 
to return to baseline energy could reveal important 
information on the pathology and could serve as a biomarker. 
We propose two metrics to measure this relationship: a 
measure of the decay in energy and the area under the curve 
of the detected response. 

 
IV. RESULTS AND DISCUSSION 

The initial experiments showed a good classification 
performance between AD and HC was obtained using the 
metrics defined based on the time required for the EEG to 
revert back to baseline levels after TMS stimulation. Figure 4 
shows the classification results in terms of accuracy, 
sensitivity, specificity, and F1 score when varying the sliding 
window size to determine TEDI. The most stable results along 
all metrics are obtained using a sliding window of 20ms. The 
accuracy, sensitivity, specificity and F1 score were of 69.32%, 
72.23%, 66.41% and 69.27 % respectively. 

Our results indicate that the proposed metrics show 
potential in differentiating between Alzheimer's disease 
patients 



 
 
 
 
 
 
 
 
 
 
 

Fig. 4.    Performance classification based on the variation of the length of the 
sliding window used to determine the return to baseline. 

 
and healthy controls. However, the performance is lower 
when compared to AD classification models obtained from, 
for instance resting state EEG [16].  This is most likely due to 
the preliminary nature of the study and the fact that only three 
features characterizing TEPs have been used as input. 
Additional time and frequency domain features could increase 
the classification performance. Furthermore, frequency 
content alterations are well known in resting state EEG 
recordings [17]. Perturbation metrics that also encode 
frequency content could be as well useful in determining and 
characterizing the response to TMS from the EEG signal. 

TMS-EEG shows significant inter-subject variability. 
While some extreme responses might be observed because of 
pathology, some patients might show reduced or no responses 
to stimulation. The proposed algorithm does not detect trials 
that might in fact exhibit no response to stimulation as the 
threshold is lowered once the energy signal does not cross the 
threshold sufficiently (Figure 2, block 2). Further 
investigation is needed to determine the optimum threshold 
choice and if these metrics can be used to also evaluate the 
lack of responses to TMS. 

Finally, the proposed metrics to characterize the response 
to TMS were evaluated based on their performance in the 
problem of AD identification. However, the response to TMS 
of AD patients is still a topic of active research. Further 
validation would be needed with respect to established 
measures of quantifying subject response to stimulation such 
as motor evoked potentials [18] or increase in heart rate 
responses. These measures should also be tested longitudinally 
as potential metrics for disease tracking, in conjunction with 
behavioral and cognitive data. 

 
V. CONCLUSION 

In this work we have proposed three metrics to quantify 
the response to TMS stimulation on EEG data based on signal 
energy. Results showed a good classification performance of 
69.32%, 72.23% and 66.41% accuracy, sensitivity, and 
specificity respectively. Regardless of the magnitude of 
classification performance, analysis of signal energy rep- 
resents an innovative approach to quantify and model the 
brain's response to perturbation, with strong potential for 
characterizing disease states. 

Future work will investigate other signal characteristics that 
could indicate the presence of a response to TMS stimulation 
and will validate the metrics with respect to other perturbation 
measures extracted from the motor system. 
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