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Abstract— This work focuses on the automatic detection of
COVID-19 from the analysis of vocal sounds, including sustained
vowels, coughs, and speech while reading a short text. Specifically,
we use the Mel-spectrogram representations of these acoustic
signals to train neural network-based models for the task at
hand. The extraction of deep learnt representations from the Mel-
spectrograms is performed with Convolutional Neural Networks
(CNNs). In an attempt to guide the training of the embedded
representations towards more separable and robust inter-class
representations, we explore the use of a triplet loss function.
The experiments performed are conducted using the Your Voice
Counts dataset, a new dataset containing German speakers
collected using smartphones. The results obtained support the
suitability of using triplet loss-based models to detect COVID-19
from vocal sounds. The best Unweighted Average Recall (UAR)
of 66.5 % is obtained using a triplet loss-based model exploiting
vocal sounds recorded while reading.

I. INTRODUCTION

The pandemic caused by the outbreak of the Coronavirus
Disease 2019 (COVID-19) in March 2020 still impacts our
daily lives. The detection of COVID-19 cases in addition to
the safety measures –washing hands, wearing face masks,
and social distancing– have proven effective to control the
spread of the virus. The current detection of COVID-19 is
performed with medical diagnostic tools, which are expensive,
time-consuming, and generate a large amount of waste. To
ease the diagnosis, we envision the use of digital health
solutions powered with Artificial Intelligence (AI) to develop
large-scale and cost-effective pre-screening tools.

To support the compliance with the safety measures,
researchers have investigated the detection of face masks using
visual [1] and acoustic [2] information, and the recognition
of washing hands exploiting the measurements read with
the sensors embedded in a smartwatch [3], [4]. AI-based
solutions have also been proposed in the literature to detect
COVID-19 patients from the analysis of X-ray images [5],
[6], CT scans [7], [8], or acoustic signals produced by the
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human body, including coughs, breaths, and speech [9], [10],
[11], [12], [13], [14].

Herein, we present the Your Voice Counts dataset, a
new dataset collected using smartphones to detect COVID-
19 from different vocal sounds, including the sustained
vowels /a:/, /e:/, /i:/, /o:/, and /u:/, coughing, and reading
samples [15]. Furthermore, we report our initial experiments
conducted in this dataseset using Convolutional Neural
Networks (CNNs) to extract deep learnt representations
from the Mel-spectrogram representations of the acoustic
samples. The learning of the embedded representations in
traditional supervised learning approaches using CNNs for
feature extraction is not constrained during the training
process. This casts doubts on the meaning of the embedded
representations. To overcome this issue, we propose the
use of a triplet loss function to guide the learning of these
embedded representations. This technique aims to minimise
the distance of the embedded representations learnt from the
Mel-spectrogram representations corresponding to speakers
with the same COVID-19 status, and maximise the distance
of the embedded representations when the Mel-spectrogram
representations correspond to speakers with the opposite
COVID-19 status.

The rest of the paper is organised as follows. Section II
introduces the dataset explored in this work. Section III
describes the methodology followed, and Section IV reports
and analyses the results obtained from the experiments
conducted. Finally, Section V concludes the paper.

II. YOUR VOICE COUNTS DATASET

This work explores the Your Voice Counts dataset, a new
dataset for COVID-19 detection from vocal system-produced
sounds collected in-the-wild from the general public. The
study procedures were approved by the ethics representative
of the University of Augsburg, Germany, and all participants
gave their written informed consent for participation. For the
present study, we include only German-speaking participants
living in Germany or Austria to minimise language-dependent
influences. The COVID-19 positive group comprises 8
participants (7 males, 1 female; mean age = 36 years ±
16 years standard deviation, age range = 17 – 59 years),
while the COVID-19 negative group includes 75 participants
(27 males, 48 females; mean age = 45 years ± 14 years
standard deviation, age range = 18 – 78 years). All participants
of the COVID-19 positive group were tested positive for
COVID-19 within the last 3 days prior to inclusion into
the study; all participants of the COVID-19 negative group
were tested negative for COVID-19 within the last 3 days
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TABLE I
SUMMARY OF THE NUMBER OF GERMAN SPEAKERS OF THE YOUR VOICE COUNTS DATASET SELECTED TO POPULATE THE 3 FOLDS IN WHICH WE HAVE

PARTITIONED THE AVAILABLE DATA. THE PARTITIONING IS PERFORMED FOLLOWING A STRATIFICATION APPROACH ALONG THE DIMENSIONS OF

COVID-19 STATUS, SEX, AND AGE.

Fold 1 Fold 2 Fold 3 ∑
COVID-19 Status Pos Neg

∑
Pos Neg

∑
Pos Neg

∑
Age ≤ 30

M 1 – 1 1 1 2 1 1 2 5
F – 4 4 – 4 4 1 3 4 12∑

1 4 5 1 5 6 2 4 6 17

30 < Age < 60
M – 6 6 2 6 8 2 6 8 22
F – 11 11 – 11 11 – 9 9 31∑

– 17 17 2 17 19 2 15 17 53

Age ≥ 60
M – 1 1 – 3 3 – 3 3 7
F – 2 2 – 2 2 – 2 2 6∑

– 3 3 – 5 5 – 5 5 13∑
1 24 25 3 27 30 4 24 28 83

TABLE II
SUMMARY OF THE VOCAL SOUNDS INCLUDED IN THE YOUR VOICE

COUNTS DATASET, AND THE AMOUNT OF AVAILABLE DATA IN TERMS OF

TIME PER FOLD. THE TEMPORAL INFORMATION IS PROVIDED IN THE

FORMAT (HH:)MM:SS.

Vocal Sound Fold 1 Fold 2 Fold 3
∑

/a:/ 4:42 5:50 6:30 17:02
/e:/ 5:00 6:02 6:49 17:51
/i:/ 5:06 5:48 6:45 17:39
/o:/ 5:21 6:06 6:43 18:10
/u:/ 4:45 5:59 6:51 17:35
Coughing 6:03 7:52 8:22 22:17
Reading 20:39 25:45 23:53 1:10:17∑

51:36 1:03:22 1:05:53 3:00:51

prior to inclusion into the study. The participants provided
a copy of their COVID-19 test result and completed a
short questionnaire including information about potential
symptoms and pre-existing health issues. 2/8 COVID-19
positive participants were smokers, 0/8 reported pre-existing
pulmonary diseases or voice problems, and 8/8 reported fever
and/or respiratory symptoms at the time of recording. 4/75
COVID-19 negative participants were smokers, 7/75 reported
pre-existing pulmonary diseases or voice problems, and 23/75
reported fever and/or respiratory symptoms at the time of
recording. None of the participants reported reading problems.

According to the study protocol, the speakers were asked
to record themselves when performing the following three
tasks. Task 1: Production of the sustained vowels /a:/, /e:/, /i:/,
/o:/, /u:/ (in this order), representing phonemes of the German
standard language. The participants were instructed to produce
each vowel as long as possible and to make a breathing break
after each vowel. Task 2: The participants were asked to
cough deliberately 5 times and to make a breathing break
after each cough. Task 3: Reading aloud the standard phonetic
text “The North Wind and the Sun” in German. From the

technical perspective, the participants were instructed to take
the recordings in a quiet room using their own smartphone
at a distance of approximately 40 centimetres from the face.
Each participant transferred his/her recording via the secure
file-sharing service of the University of Augsburg. Upon file
receipt, the recordings were converted into the audio format
16 kHz/16 bit single-channel PCM and segmented manually
for the different tasks.

The selected participants are split into 3 stratified folds
to train and assess the performance of our COVID-19
detection models. The stratification is performed along three
dimensions: COVID-19 status (positive or negative), sex (male
or female), and age (below 30, between 30 and 60, and above
60). Each fold contains both COVID-19 negative participants
with symptoms and/or pre-existing health issues, and healthy
COVID-19 negative participants. Table I summarises the
number of participants belonging to each fold in terms of
these three dimensions. The total amount of data time-wise
of the different vocal sounds included in the dataset per fold
is reported in Table II.

III. METHODOLOGY

This section describes the methodology followed. Section III-
A details the pre-processing applied to the recorded vocal
sounds, Section III-B introduces the models implemented,
and Section III-C summarises their training details.

A. Data Preparation

This study analyses the 7 vocal sounds available in the
dataset (cf. Section II) separately. Nonetheless, the same pre-
processing is applied to all of them. To guarantee that the
networks can get enough information to extract embedded
representations from, we require each vocal sound to have a
minimum length of 5 sec. Shorter vocal sounds are extended
via replication until reaching this threshold. From each vocal
sound, we extract the Mel-spectrogram representation in dBs,
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using 128 Mel-Frequency Cepstral Coefficients (MFCCs),
and a hop size of 128 samples (8 msec). The obtained
representation is normalised so its values range ∈ [0, 1]. After
the normalisation, we segment the generated Mel-spectrogram
using a window length of 5 sec –625 bins in the temporal
domain– and a 50 % overlap. The segmented representations
are stored as images of 224× 224 pixels.

B. Models Description
The models implemented receive a Mel-spectrogram repre-
sentation of 5 sec length as input, and output the probability
of the current sample to belong to a COVID-19 positive or
negative speaker. The networks behind are composed of two
blocks: the first block extracts deep learnt representations
from the input Mel-spectrogram representations, while the
second block performs the actual classification.

The feature extraction block implements two convolutional
layers with 32 and 64 filters, respectively, with a kernel size of
3×3, and a stride of 1. Following each convolutional layer, we
use batch normalisation, and the output is transformed using
a Rectified Linear Unit (ReLU) function. A 2-dimensional
max pooling layer, and a 2-dimensional adaptive average
pooling layer are included at the end of the first and
second convolutional blocks, respectively. The output of
the feature extraction block is flattened before being fed
into the classification block of the network, generating a
256-dimensional embedded representation of the input Mel-
spectrogram representation. The classification block contains
two fully connected layers with 32 and 2 output neurons,
respectively, preceded each by a dropout layer with probability
0.3. While the output of the first layer is transformed using
a ReLU activation function, the output of the second layer is
transformed using a Softmax function, so the network outputs
can be interpreted as probability scores. When multiple Mel-
spectrogram representations are generated from the same
vocal sound, we use a majority voting schema to determine
the COVID-19 status to infer for the overall sample.

The baseline models implementing the aforementioned
network architecture are trained following a traditional
supervised learning approach –i. e. , the network parameters
are updated by feeding a sample into the model, comparing
the output and the ground truth information, and back-
propagating the error. In an attempt to improve the quality of
the embedded representations learnt, we explore the use of a
triplet loss-based approach. When training the models using
this approach, we feed into Siamese feature extraction blocks
a Mel-spectrogram representation of the current speaker,
the anchor Xa, accompanied by 2 additional, randomly
selected representations from the training data: one of these
representations belongs to a speaker with the same COVID-
19 status as the anchor, X+, and the other belongs to a
speaker with the opposite COVID-19 status as the anchor,
X−. We represent the embedded representations learnt as
f (Xa), f (X+), and f (X−), respectively. In the next step,
we compute the Euclidean distance between the embedded
representations of X+ and X−, and the anchor; i. e. ,

d+ =|| f
(
X+

)
− f (Xa) ||22, (1)

and
d− =|| f (Xa)− f

(
X−) ||22, (2)

respectively. Using these distances, we define the triplet loss

L = max{0, d+ + α− d−}. (3)

Updating the network parameters of the feature extraction
block using this loss function, we aim to improve the
robustness of the embedded features learnt increasing the
separability of the inter-class embedded representations.
Finally, only the embedded representation learnt from the
anchor representation, f (Xa), is fed into the classification
block of the network.

C. Networks Training

For a fair comparison of the models, these are all trained
under the exact same conditions. The baseline models use
the Categorical Cross-Entropy as the loss to minimise. The
triplet loss-based models update the network parameters
of the feature extraction block by minimising the loss
function defined in Equation (3) using α = .5, which we set
empirically, and the network parameters of the classification
block by minimising the Categorical Cross-Entropy loss. For
the optimisation, we use Adam with a fixed learning rate
of 10−3. To compensate for the data imbalance in terms of
the COVID-19 status (cf. Table I), we implement a weighted
random sampler to select the Mel-spectrograms for training at
each epoch. We assess the model performances using a nested
3-fold cross-validation. We select the Unweighted Average
Recall (UAR) as the evaluation metric, and, therefore, we
define LUAR = 1− UAR as the validation error to monitor
during the training process. Network parameters are updated
in batches of 128 samples, and trained during a maximum
of 100 epochs. We implement an early-stopping mechanism
to stop training when the validation error does not improve
for 20 consecutive epochs. Each fold is trained during a
specific number of epochs. Hence, when modelling all training
material and to prevent overfitting, the training epochs are
determined by computing the mean of the training epochs
processed in each fold, rounded up to the next integer.

IV. EXPERIMENTAL RESULTS
The results obtained with the baseline and the triplet loss-
based models are presented in Table III.

Analysing the average results obtained with the baseline
models (cf. Table III) among the 3 folds, we observe that
the models perform worse than chance level (50 % for two
classes using UAR) when exploiting the /u:/ and the coughing
sounds, with a UAR of 49.2 % and 41.2 %, respectively. The
baseline models only achieve a chance level performance
with the /a:/ and the /i:/ sounds. This result suggests that,
using these sounds, the baseline models most likely predict
that all samples belong to the same class. Using the /e:/, the
/o:/, and the reading sounds, the baseline models perform
better than chance, scoring a UAR of 57.4 %, 54.4 %, and
51.8 %, respectively.

The results obtained with the triplet loss-based models
(cf. Table III) indicate their underperformance when exploiting
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TABLE III
DESCRIPTIVE STATISTICS (µ: MEAN, σ: STANDARD DEVIATION)

COMPUTED FROM THE UNWEIGHTED AVERAGE RECALL SCORES (%)
OBTAINED AMONG THE 3 FOLDS IN WHICH WE PARTITIONED THE

AVAILABLE DATA PER VOCAL SOUND USING THE BASELINE AND THE

TRIPLET LOSS-BASED MODELS. THE CHANCE LEVEL FOR A BINARY

CLASSIFICATION PROBLEM IN TERMS OF UAR IS 50 %.

Vocal Sound Baseline Triplet Loss

µ σ µ σ

/a:/ 50.0 0.0 42.8 6.2
/e:/ 57.4 12.8 59.2 17.7
/i:/ 50.0 0.0 65.1 19.3
/o:/ 54.4 14.3 53.5 6.0
/u:/ 49.2 5.0 56.9 12.0
Coughing 41.2 11.8 50.6 1.1
Reading 51.8 5.0 66.5 21.1

the /a:/ sounds. This model scores a UAR of 42.8 %, below the
chance level. The triplet loss-based model using participants’
voice while reading achieves the best performance in terms
of UAR, 66.5 %, closely followed by the model exploiting
the /i:/ sounds with a UAR of 65.1 %.

Comparing the performances obtained with the baseline
and the triplet loss-based models, we observe that the triplet
loss-based models outperform the baseline models in 5 out of
7 vocal sounds investigated. Thus, it seems reasonable to state
that the triplet loss-based approach contributes to learn more
discriminative inter-class embedded representations, which
help to improve the model performances. Among all the
experiments conducted, the triplet loss-based model exploiting
the reading sounds scores the best UAR of 66.5 %.

V. CONCLUSIONS

This work presented the Your Voice Counts dataset, a new
dataset for detecting COVID-19 from vocal sounds. The
dataset included German speakers and was recorded using
smartphones. Furthermore, we focused on the use of a
triplet loss function to train COVID-19 detection models
from the collected vocal sounds. With the use of the triplet
loss function, we aimed at guiding the training of the deep
learnt representations towards more discriminative and robust
inter-class representations. The results obtained from the
experiments conducted supported the suitability of the triplet
loss function, as the models trained using this approach
outperformed the baseline models in 5 out of the 7 vocal
sound types investigated. The best UAR score of 66.5 %
was obtained using the triplet loss-based model exploiting
reading sounds. As observed from Table II, the training
material available from this sound type was larger than from
the sustained vowels, or the coughing sounds. Thus, this
attribute can benefit the models using the reading sounds.
We hypothesise that the suitability of this vocal sound for
the detection of COVID-19 could also be attributed to the
tasks order in the recording protocol. The reading task was
the last one, and, as a consequence, the vocal system was
stressed longer, increasing the salient information of the

COVID-19 positive participants. Future works can consider
the fusion of different vocal sounds, the exploration of more
advanced techniques to increase the separability of the inter-
class representations, and the use of few-shot learning to
overcome the scarcity of COVID-19 positive samples.
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