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Abstract— In the last years, the characterization of Brain-
Heart Interactions (BHIs) in epilepsy has gained great interest. 
For some specific seizures, there is still a lack of information 
about the mechanisms that occur during or close to ictal events 
between the Central Nervous System (CNS) and the Autonomic 
Nervous System (ANS). That is the case for neonatal seizures, 
one of the most common neurological emergencies in the first 
days of life. This paper evaluated possible differences in BHIs 
between newborns with seizures and seizure-free ones. We 
applied Convergent Cross Mapping approaches to a cohort of 52 
newborns from a public dataset. Even though preliminary, 
results showed that newborns with seizures have a lower degree 
of interaction between the CNS and the ANS than the seizure-
free ones (Mann-Whitney test: p-value <0.05). These results are 
of clinical relevance for future studies about using BHI 
approaches to better understand the neural mechanisms behind 
neonatal seizures. 

 
Clinical Relevance— The study of BHIs in newborns with 

seizures might be helpful to better characterize the disorder or 
the aetiologies behind ictal events. Moreover, BHI approaches 
may confirm the involvement of the ANS during or close to a 
neonatal seizure event. 

I. INTRODUCTION 

It is well known that a mutual exchange of information 
exists between the cortical activity of the Central Nervous 
System (CNS) and the Autonomic Nervous System (ANS). 
For example, cardiac activity can be altered by inputs from 
baroreceptors, chemoreceptors, and other sources [1]. Thus, 
the analysis and the characterization of the Brain-Heart 
interactions (BHIs) during physiological and pathological 
events is of great clinical interest [1]. The ANS-to-CNS system 
interaction was investigated and modelled using physiological 
signals such as the electroencephalogram (EEG) and the Heart 
Rate Variability (HRV) [1, 2]. Moreover, several 
methodologies were proposed to measure or model these 
interactions, such as Granger Causality, Transfer Entropy and 
the Convergent Cross Mapping (CCM) [2]. Above mentioned 
methods have been applied in various neuroscience 
applications such as polysomnography [3], mood disorders or 
emotion recognition [4] and epilepsy [5, 6]. In particular, the 
study of BHI in epilepsy could have strong implications for 
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diagnosis and therapy to detect signs or symptoms related to a 
sudden unexpected death in epilepsy (SUDEP) [6].  

However, there is still a lack of information about the 
interactions between CNS and ANS during or close to several 
seizure events [6], such as neonatal seizures, the most common 
neurological emergency in the first days of life of the newborn 
[7]. According to a recent ILAE position paper [7], neonatal 
seizures deserve a particular classification among seizure 
events, both for the intrinsic electroclinical characteristics of 
the newborn (when compared to the adult [8]), and their 
aetiologies [9]. Seizure detection is tricky and time-
consuming, and delayed treatment can negatively affect 
neurodevelopment [7, 10]. The analysis of interactions 
between physiological systems has already been performed for 
newborns, mainly to assess neurovascular coupling [11, 12]. 
However, to the best of our knowledge, a specific investigation 
of BHIs in newborns with seizure events using EEG and HRV 
signals is still scarce [11]. As stated in [13], there is increasing 
evidence about a significant involvement of ANS during 
neonatal seizures. Similarly to the “epileptic heart” in the adult 
and the child [14], it seems that neonatal seizures might have 
a direct/indirect involvement on heart dynamics as well as on 
the ANS. In particular, the Central Autonomic Network 
(CAN) might have an active role in the seizure onset [7, 13, 
15]. This study investigated BHIs in newborns with and 
without seizures using EEG and HRV signals. The aim is to 
assess if different behaviors may exist between the CNS and 
ANS for the two populations considered. We used the 
Convergent Cross Mapping method (CCM) [16], already 
adopted for the analysis of BHI in specific childhood epilepsy 
[5]. Proposed methods were developed and validated on a 
public dataset of neonatal EEG and ECG signals recorded in 
the Neonatal Intensive Care Unit (NICU) at the Helsinki 
University Hospital, Helsinki, Finland [17]. 

This paper is organized as follows: Section II describes the 
dataset used, the pre-processing applied to EEG and ECG 
signals and the BHIs analysis performed with CCM. In Section 
III, statistical results are shown. Section IV is devoted to the 
discussion about the use of BHI for the characterization of 
newborns with seizure events and seizure-free ones. 
Conclusions are drawn in Section V. 
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II. MATERIAL AND METHODS 

The proposed methods were implemented under the 
MATLAB computing environment (version 2021b [18]). We 
developed our methods using a public dataset of EEG and 
ECG signals collected at Helsinki University Hospital, 
Helsinki, Finland [17]. Signals were recorded with the 
NicoletOne System, Natus Medical [17], with a sampling 
frequency of 256Hz. Seventy-nine newborns were 
independently evaluated by three experts, labelling the time 
occurrence of the seizure events (labels’ frequency: 1Hz). 39 
patients had a unanimous consensus about seizure presence 
inside the recordings. For 22 patients, the experts did not find 
any seizures, and we considered them seizure-free patients. In 
this study, we analyzed only the patients with unanimous 
consensus [19, 20]. Thus, the remaining 18 patients were 
excluded. Moreover, 9 patients were excluded as their ECG 
signal was not present or was highly corrupted by noise. 
Therefore, our analysis was applied to 33 patients with seizure 
events and 19 seizure-free ones. We used the same bipolar 
configuration for EEG analysis as in [19, 21]: F4-C4, C4-O2, 
F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3 and C3-T3. 

All the EEG signals were filtered with a band-pass FIR 
filter in the bandwidth 0.25-16 Hz. ECG signals were analyzed 
to extract HRV time series. Both ECG and EEG underwent a 
sub-windowing procedure of 30s of duration [5, 21]. 
Specifically, ECGs were first pass-band filtered, in the 
bandwidth of 0.05-45 Hz, to increase the Signal-to-Noise 
Ratio (SNR). Then Inter-Beat-Interval (IBI) time series were 
obtained through the Pan-Tompkins’ algorithm [21, 22]. 
Eventually, the HRV signals were interpolated to have the 
same number of samples of the EEG signals. We checked the 
following interpolation methods in this preliminary 
evaluation: linear, nearest neighbour and the French-Holden 
algorithm [2, 5]. Moreover, both EEG and the interpolated 
HRV were downsampled to 16 Hz, obtaining 480 samples in 
each window. 

For each EEG derivation and each 30s window, we 
evaluated the CCM correlation coefficients between the EEG 
and the HRV signals. The CCM approach is a nonlinear 
method to assess causality between two time series X and Y, 
observing the correspondence between the so-called “Shadow 
Manifolds” MX and MY, built using lagged coordinates from 
the original time series X and Y [2, 16]. The lagged versions 
depend on the following parameters: the embedding 
dimension D, the time lag τ and the library length L [2, 5, 16]. 
In our case, L was equal to the number of window’s samples 
(L=480). Following the indications in [2, 5], we investigated 
values for D from 2 to 8 and for τ from 1 to 5. 

The interactions between the two systems were quantified 
by CCM correlation, defined as the absolute value of the 
Pearson correlation coefficient (ρ) between the original time 
series and an estimation using the CCM with the other time 
series [2, 5]. In other words, we obtained, for all the 8 
derivations considered, two CCM indexes (1) and (2) defined 
as follows: 

 CCMEEG→HRV EEG, EEG|MHRV) 

 CCMHRV→EEG HRV, HRV|MEEG) 

CCM implementation details can be found in [23]. 
Moreover, we computed the Average Degree metrics [12] as 
the mean of CCM values, both for (1) and (2), between all the 
derivations considered.  

A. Statistical Analysis 

We computed the overall mean of CCM coefficients for 
each patient, distinguishing between seizure events and 
seizure-free patients. First, we tested if CCM values (1) and 
(2) and the Average Degree’s CCM values were statistically 
different between the two groups. The hypothesis of normality 
distribution was checked through the Shapiro-Wilk test (level 
of significance α=0.05). As the normality hypothesis was not 
confirmed, we applied the non-parametric Mann-Whitney test 
(Test MW, level of significance α=0.05). 

Moreover, we added a surrogate analysis to verify if the 
CCM values were not due to chance or random fluctuations 
within the time series but represent a specific interaction 
between the two systems. To this aim, for each window, we 
built a set of 100 surrogates from the HRV interpolated signal 
using the Amplitude-Adjusted Fourier Transform (AAFT) 
method [24]. Then for the surrogate sets, we computed the 
CCM correlation coefficients (1) and (2) and the Average 
Degree. We considered a CCM value as significant if it was 
greater than the following significance thresholds: 
Tsurr=μsurr+2σsurr; where μsurr and σsurr are the mean and the 
standard deviation values of the metrics obtained from the 
surrogate sets [25]. Furthermore, to test statistical differences 
between surrogates’ CCM values and CCM values from the 
original time series, we applied a non-parametric Mann-
Whitney test (level of significance α=0.05). 

III. RESULTS 

In Table I, the statistical results obtained on CCMEEG→HRV 

mean values between 33 patients with seizure events and 19 
seizure-free patients are shown. The same analysis for the 
Average Degree parameter is reported in the last row. 

TABLE I.  RESULTS OF STATISTICAL TESTS FOR THE PARAMETER 

CCMEEG → HRV PERFORMED BETWEEN EACH DERIVATION AND HRV SIGNAL. 
THE DESCRIPTIVE STATISTICS (MEAN μ ± STANDARD DEVIATION σ) ARE 

SHOWN. STAR (*) DENOTES STATISTICALLY SIGNIFICANT RESULTS. 

 CCM  
EEG → HRV 

Test  
MW 

Derivation 
Seizure-free patients 

μ±σ 
Patients with seizures 

μ±σ 
p-value 

F4-C4 0.23 ± 0.08 0.18 ± 0.05 0.010* 
C4-O2 0.24 ± 0.07 0.19 ± 0.06 0.001* 
F3-C3 0.22 ± 0.10 0.18 ± 0.07 0.106 
C3-O1 0.22 ± 0.07 0.19 ± 0.09 0.154 
T4-C4 0.24 ± 0.08 0.19 ± 0.06 0.020* 
C4-Cz 0.25 ± 0.07 0.19 ± 0.06 0.012* 
Cz-C3 0.23 ± 0.08 0.19 ± 0.08 0.018* 
C3-T3 0.21 ± 0.10 0.18 ± 0.09 0.223 

Average  
Degree 

0.23 ± 0.08 0.20 ± 0.07 0.029* 

 

The descriptive statistics are related to the following 
CCM’s parameters: D=3, τ=1, L=480. The interpolation 
method selected for this experiment was the linear one. The 
same statistical analysis related to CCMHRV→EEG is shown in 
Table II. Table III concerns the descriptive statistics of CCM 
parameters related to surrogate analysis. We reported the 
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average significant thresholds and their standard deviations for 
patients with seizure events and seizure-free patients. Star (*) 
denotes a statistically significant difference with the CCM 
values computed with the original time series. To assess 
statistical differences, we used a non-parametric Mann-
Whitney test (level of significance α=0.05). 

TABLE II.  RESULTS OF STATISTICAL TESTS FOR CCMHRV → EEG. THE 

DESCRIPTIVE STATISTICS (MEAN μ ±STANDARD DEVIATION σ) ARE SHOWN. 
STAR (*) DENOTES STATISTICALLY SIGNIFICANT RESULTS. 

 CCM  
HRV → EEG 

Test  
MW 

Derivation 
Seizure-free patients 

μ ± σ 
Patients with seizures 

μ ± σ 
p-value 

F4-C4 0.11 ± 0.03 0.11 ± 0.04 0.530 
C4-O2 0.10 ± 0.03 0.10 ± 0.05 0.287 
F3-C3 0.12 ± 0.04 0.10 ± 0.04 0.493 
C3-O1 0.09 ± 0.03 0.10 ± 0.03 0.044* 
T4-C4 0.10 ± 0.02 0.11 ± 0.05 0.071 
C4-Cz 0.11 ± 0.02 0.11 ± 0.03 0.196 
Cz-C3 0.10 ± 0.03 0.11 ± 0.04 0.371 
C3-T3 0.09 ± 0.02 0.10 ± 0.03 0.019* 

Average  
Degree 

0.10 ± 0.02 0.11 ± 0.04 0.183 

TABLE III.  DESCRIPTIVE STATISTICS (MEAN μ ± STANDARD DEVIATION 

σ), FROM SURROGATE ANALYSIS. STAR (*) DENOTES SIGNIFICANT 

DIFFERENCES BETWEEN SURROGATES’ CCM VALUES AND THEIR 

RESPECTIVE VALUES SHOWN IN TABLE I AND II. 

 

Test Surrogates 

Tsurr=μsurr+2σsurr 
CCM  

EEG → HRV 
CCM  

HRV → EEG 

Derivation 
Seizure-free 

patients 
Tsurr (μ ± σ) 

Patients 
with seizures 
Tsurr (μ ± σ) 

Seizure-free 
patients 

Tsurr (μ ± σ) 

Patients 
with seizures 
Tsurr (μ ± σ) 

F4-C4 0.12± 0.02* 0.10± 0.02* 0.10 ± 0.01 0.10± 0.02 
C4-O2 0.13± 0.03* 0.11± 0.03* 0.09 ± 0.02 0.10± 0.02 
F3-C3 0.12± 0.03* 0.10± 0.02* 0.10 ± 0.02 0.10± 0.01 
C3-O1 0.12± 0.03* 0.11± 0.02* 0.09 ± 0.02 0.10± 0.02 
T4-C4 0.13± 0.03* 0.12± 0.03* 0.10 ± 0.02 0.10± 0.02 
C4-Cz 0.14± 0.03* 0.11± 0.02* 0.10± 0.01 0.10± 0.01* 
Cz-C3 0.13± 0.03* 0.11± 0.02* 0.10± 0.02 0.10± 0.02 
C3-T3 0.12± 0.03*  0.10± 0.02* 0.09± 0.02 0.10± 0.02 

Average  
Degree 

0.12± 0.03* 0.10± 0.02* 0.09± 0.01* 0.10± 0.02 

 

IV. DISCUSSION  

This work evaluated whether CCM analysis could provide 
helpful and significant information about BHIs in newborns 
with and without seizures. As shown in Table I, we obtained 
significant results for CCMEEG→HRV values for several 
derivations (5 out of the 8 considered) and for the Average 
Degree parameter (p-values<0.05). Thus, the interaction 
between CNS and ANS may differ in patients with seizure 
events and seizure-free ones. Moreover, the average values of 
CCMEEG→HRV were lower for patients with seizures than for 
seizure-free ones. This suggests that neonatal seizures might 
significantly alter the neuronal interplay between the two 
systems, making the ANS less “predictable” in response to 
variation of the CNS or cortical activity [5]. Low values of 
CCM mean a low causality relationship between two systems 
[2, 5]. We did not obtain significant results for all the 
derivations considered. That might be since neonatal seizures 
are mainly focal [7]. Thus, some cerebral areas may not be 
involved during ictal events for most patients in our dataset. 

Since the surrogates’ thresholds for CCMEEG→HRV were lower 
than the original values (Table III and Table I, respectively), 
this result may confirm that these interactions may be due to 
specific relationships between CNS and ANS and not to 
random fluctuations of the time series. However, the same 
cannot be said about the CCMHRV→EEG values: although we 
obtained significant results for two derivations (C3-O1 and 
C3-T3 in Table II), these results have to be considered with 
caution because the surrogates’ values (Table III) did not show 
significant differences from them (p-value > 0.05). Thus, these 
interactions might be due to chance and not a real relationship 
between ANS and CNS. For example, Fig. 1a and 1b show the 
Average Degree’s CCM trends of a single patient and their 
surrogates’ analysis. As shown in Fig. 1a, the surrogates values 
remain below the CCMEEG→HRV, while CCMHRV→EEG values 
remain lower than surrogates in almost all windows. 

 

Figure 1. BHI analysis for a single patient with a single seizure event. (a) 
Average Degree’s CCMEEG→HRV trend (blue line) and the corresponding 
surrogates’ values for each window (dashed line). (b) Average Degree’s 
CCMHRV→EEG  trend (red line) and the corresponding surrogates’ values for 
each window (dashed line). The orange line between windows 35 and 65 
represents the time occurrence of the seizure event. 

Thus, our results suggest that in patients with seizure 
events, the heart dynamics could be altered by the CNS 
activity but not the opposite. It agrees with [7, 9, 13]: seizures 
may alter the ANS dynamics and not only the CNS one. The 
CCM approach seems to catch differences in BHIs in 
newborns with and without seizures. However, our analysis 
has some limits. First, the choice of montage is a critical point, 
and it may alter the BHI results. Thus further analysis is 
needed to find which montage could be the best for neonatal 
BHI analysis. Anyway, as shown in Table I, multichannel 
analysis can provide better information than a single derivation 
analysis because some derivations may not conduct significant 
interactions. Another critical issue concerns the choice of 
CCM parameters D, τ and L, which could not be the best if 
used on other datasets. Thus, an exhaustive evaluation should 
be done when CCM analysis is applied to other datasets [5]. 

We confirmed that BHIs might differ in newborns with 
seizures and seizure-free ones. Future studies could focus on 

 
(a) 

 
(b) 
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intrinsic differences of BHI for patients with seizure events. 
They could focus on differences between interictal and ictal 
periods [20] or between pre-ictal and post-ictal periods [8]. 
Others could investigate BHIs among different aetiologies [7, 
9]; or how BHI varies after pharmacological treatments [6]. 

V. CONCLUSIONS 

Our results must be considered preliminary, and further 
studies are needed to confirm the usefulness of BHI in neonatal 
seizure detection and characterization. However, our findings 
suggest that ANS and HRV analysis are strictly related to 
seizure events in newborns. This information could better 
understand these pathological events and support neonatal 
seizure detection methods [9, 10, 19].  
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