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Abstract—Convolutional neural networks (CNN) have 

revealed exceptional performance for fluorescence lifetime 

imaging (FLIM). However, redundant parameters and 

complicated topologies make it challenging to implement such 

networks on embedded hardware to achieve real-time 

processing. We report a lightweight, quantized neural 

architecture that can offer fast FLIM imaging. The forward-

propagation is significantly simplified by replacing matrix 

multiplications in each convolution layer with additions and data 

quantization using a low bit-width. We first used synthetic 3-D 

lifetime data with given lifetime ranges and photon counts to 

assure correct average lifetimes can be obtained. Afterwards, 

human prostatic cancer cells incubated with gold nanoprobes 

were utilized to validate the feasibility of the network for real-

world data. The quantized network yielded a 37.8% 

compression ratio without performance degradation. 

 
Clinical relevance—This neural network can be applied to 

diagnose cancer early based on fluorescence lifetime in a non-

invasive way. This approach brings high accuracy and 

accelerates diagnostic processes for clinicians who are not 

experts in biomedical signal processing. 

 

I. INTRODUCTION 

Fluorescence is a molecular nature absorbing light at a 
specific wavelength and emitting light at another wavelength. 
This process can be quantized by fluorescence lifetime 
modelling the average duration of molecule in the excited state 
before emitting photons. Fluorescence lifetime imaging 
(FLIM) techniques have been applied to monitoring cellular 
health [1] and clinical surgery [2]. As molecules have different 
optical properties, FLIM can identify fluorophores with 
overlapping spectra, which leads to high contrast imaging that 
intensity-based fluorescence microscopes cannot offer. 
Another crucial application of FLIM is Förster resonance 
energy transfer (FRET) [3], which can probe dynamic 
molecular interactions such as protein-protein interactions [4].  

Since FLIM is indirect and lifetime interpreting is an inverse 
problem, efficient algorithms are desired. ANNs have 
achieved superior performance compared to fitting [5] and 
non-fitting [6] methods. Multi-layer perceptron (MLPs) 
architectures [7] were presented for mono- and bi-exponential 
model analysis. 3-D [8] and 1-D CNNs [9] were proposed to 
process entire 3-D tensors and pixel-wise 1-D histograms, 
respectively. A generative adversarial network [10] was 
utilized in photon-starved conditions. Thanks to high hardware 
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integration technologies, modern time-correlated single-
photon counting (TCSPC) systems [11] have been integrated 
on a single board. For example, TCSPC systems can utilize 
field-programmable gate arrays (FPGA) or CMOS integrated 
systems [12] to read out and process time-resolved data. 
Implementing ANNs on such processors can achieve online 
processing instead of post-processing on a PC or GPU. 
However, it is increasingly challenging to perform ultrafast 
lifetime analysis as the spatial and temporal resolution 
increases. Although earlier hardware-friendly algorithms for 
FLIM have been introduced [6], bottlenecks remain. First, 
while the hardware centre-of-mass algorithm [6] obtained the 
fastest speed, it is susceptible to noise. Second, the CNN 
hardware implementation for a dynamic lifetime sensing 
system [13] includes redundant matrix multiplications. Further, 
it was implemented by a high-level hardware design paradigm, 
and fundamental hardware optimization was not achieved. To 
address the issues, we report a lightweight neural network for 
FLIM. Inspired by AdderNet [14], we used simple operators, 
namely, matrix additions, to replace multiplications in 
convolutional modules. Further, we used an asymmetric 
quantization strategy to compress floating-point 32-bit to 16-
bit for activation outputs and 8-bit weights.  

Section II discusses the mathematical model of fluorescence 
lifetime and data acquisition. Section III depicts the overview 
of the neural network and adder-based convolutions. Section 
IV and V evaluate the network with synthetic datasets and a 
real-case study. Section VI concludes this work and illustrates 
future work. 

II. MATHEMATICAL MODEL  

A. Photon Acquisition and Modeling 

The fluorescence lifetime can be measured in time and 

frequency domains. Here we focus on the time-domain 

approach as our experiments are based on a TCSPC imaging 

system. 

An actual fluorescence decay is the accumulation of 

multiple exponential decays formulated by 
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where A is the amplitude, an and n are the fraction and 

lifetime of nth fluorescence component. Samples are excited 

by periodic laser pulses, and a convolution process can model 

the acquired data as 
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where IRF(·) is the instrument response function (IRF). p(t) 

represents noise, including the dominating Poisson noise [15]. 

B. Synthetic FLIM Data Generation 

We used MATLAB to synthesize the IRF using a Gaussian 

curve with 0.167 ns FWHM, 0.039 ns timing resolution, and 

256 time-bin, according to the commercial two-photon 

equipment we use hereafter. As bi-exponential models can 

well approximate most multi-exponential models [16], we 

generated the synthetic data with two lifetime components. 

Amplitude- and intensity-weighted average lifetime are 

essential parameters for lifetime analysis, depicted by A and 

I. Therefore, we assigned A, and I vectors [16] to be ground 

truth (GT) training targets generated by  
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The input of the neural network is synthetic h(t) consisting 

of two-lifetime components. The first and second components 

were randomly selected from Uniform [0.1, 0.5] ns and 

Uniform [1, 3] ns. And a was randomly chosen from 0 to 1. 

 

III. NETWORK ARCHITECTURE 

A. Network Topology 

The input is a histogram from a tensor with the spatial 

dimension 256  256 and the temporal dimension 1  256. 

The histograms containing few photons are from the 

background without sufficient useful information and 

therefore can be ignored to save processing time. Thus, before 

the first layer takes the input, a filtering process is 

implemented to discard the pixels. As shown in Fig. 1, the 

network processes histograms pixel-by-pixel, and A, and I 

images can eventually be exported. The basic addition 

operator is adopted from AdderNet [14] that has been applied 

to image classification [17] and super-resolution [18]. Our 

work is the first neural network using addition kernels for 

FLIM analysis. Apart from adder convolutions, it is 

preferable to append a ResNet block [19] in the network's 

backbone to accelerate converge and prevent gradient 

vanishing during network training. Each adder convolution is 

followed by a Batch normalization (BN) module to handle the 

internal covariance of each layer's input, thereby stabilizing 

the training. 

B. Adder Kernel 

Classical convolutions extract local information by 

calculating similarities (cross-correlations) between feature 

maps and filters. Although multiple hardware-friendly 

convolutional kernels have been reported (reviewed in [20]), 

their performance cannot level up to multiplication-based 

convolutions. However, addition-based kernels calculating 

subtraction (l1-distance) between features and filters can  

 
Figure 1. Network architecture using adder convolutions. 

 

perform comparably to multiplication-based kernels [19]. 

Therefore, we applied addition operators to our network to 

deduce fluorescence lifetime parameters. Although BN 

modules involve matrix multiplications during forward 

propagations, the computational cost can be omitted as they 

cost a tiny portion of all computing. Since the network input 

is a 1-D histogram, the weight of a filter set is W [Kx][Ci][Co], 

where Kx is kernel size; Ci and Co  are the numbers of input 

and output channels, respectively. And Fi [L][Ci] indicates 

input features, where L is the length of the feature. Therefore, 

output features Fo can be calculated by 
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where S (Fi, W) = -| Fi -W |. With fundamental addition-based 

convolutions, a significant amount of logic resources and 

power consumption in hardware could be saved.  

C.  Quantization 

To make the network more applicable to embedded 

processors, such as FPGA devices and application-specific 

integrated circuits (ASIC), the learnable parameters were 

quantized (from floating-point 32-bit (FP32) into a low bit-

width). 
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Figure 2. Loss training and validation curves in (a) floating-point and 

(b) quantized datatypes.

Therefore, on-chip processing can be accelerated, and 

hardware overhead can be further significantly saved. The 

asymmetric quantization-aware training scheme [20] was 

utilized to fully use the quantization range without bias 

quantization towards one side. More details of the asymmetric 

quantization process were deduced elsewhere [21]. Here, 

weights and activation were quantized by 8-bit and 16-bit, 

respectively. All the convolutional layer was quantized except 

the first layer to maintain accuracy. The parameter size of our 

FP32 and quantized network are 0.095Mb and 0.036Mb, 

where a 37.9% compression ratio was achieved. Moreover, 

additions will consume much fewer clock cycles than 

floating-point multiplications on hardware. 

D. Implementation Details

This network was implemented using PyTorch. To achieve

fast convergence and maintain accuracy, we employed 

adjustive learning rates (LR) following an exponential decay 

(with initial value 1e-3, multiplicative factor = 0.995). SGD 

was the training optimizer. 40,000 and 10,000 synthetic 

histograms were assigned as training and validation datasets. 

The batch size was 128. The network was trained on one 

NVIDIA RTX6000 GPU. The training was terminated at the 

120th epoch consuming 35 minutes. Early stopping was 

adopted to monitor validation loss and cease training to 

prevent overfitting. The MSELoss function was adopted as 

the loss function to calculate square the l2 norm between the 

ground truth (GT) and predicted lifetime parameters, depicted 

by 
2
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where N is the batch size, f and f̂  are GT and restored

lifetime parameters. The total loss is the sum of the loss of A

and I in each epoch. The loss curves of FP32 and quantized  

(W16A8) datatypes are shown in Fig. 2. The accuracy of the 

quantized version is close to FP32.  

IV. EVALUATION OF SYNTHETIC DATA 

We used the Structural Similarity Index (SSIM) (in the 

range [0, 1]) to evaluate restored lifetime images. The higher  

Figure 3. Accuracy evaluation of synthetic datasets. (a) GT A
 and I 

images, lifetime decrease from top to bottom. (b) and (c) Calculated 

A
 and I  images using NLSF and our quantized neural network. 

SSIM was used to indicate the accuracy. 

SSIM we obtained, the higher fidelity algorithms 

reconstructed. We chose non-linear square fitting (NLSF) [5] 

to compare as it has been applied to most commercial 

software tools [22]. GT lifetime images in Fig. 3 (a) were 

generated depending on the given range in Section III. And 

the amplitude of each synthetic decay is from 10 to 500. Figs 

3 (b) and (c) show that our quantized network yields a higher 

SSIM than NLSF, especially for small lifetimes.  

V. REAL-CASE STUDY: PROSTATIC CANCER CELLS

Apart from synthetic data, we evaluated our network with 

human cancer cells loaded with nano-scale metallic 

nanoprobes. Gold nanorods [23,24] were chosen as carriers of 

nanoprobes because they have tunable surface plasmon 

resonance and photostability, thereby enhancing energy 

transfer and fluorescence. One gold nanoprobe comprises a 

gold nanorod and fluorophore labelled single-strand DNA in 

a hairpin shape [25]. The nanoprobes were used to detect 

mRNAs of cancer cells. Once the hybridization of DNA and 

mRNA occurs, the hairpin opens, moving the fluorophore 

away from the gold surface. Then fluorescence will be 

generated. Details of incubating the cells and nanoprobes can 

refer to the recent study [26]. The experimental procedures 

involving human subjects described in this paper were 

approved by the 

Institutional Review Board. The previous study [9] reported 

that phasor projections [27] images could be the reference 

showing the contrast between nanoprobes and cells. Fig. 4 (a) 

is the intensity image, where the nanoprobes can be detected 

but with indistinct boundaries and low contrast. 
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Figure 4. A prostatic cell loaded with nanoprobes. (a) Intensity 

images. (b) Phasor projection image. (c) and (d) A
 and I images 

restored from our quantized neural network. (e) and (f) A
 and I 

images converted from the NLSF method. 

 

Fig. 4 (c) and (d) show A,
 and I images reconstructed from 

our quantized network, where lifetime can be accurately 
deduced. Further, as shown in Fig. 4 (e) and (f), we used NLSF 
to restore lifetime images as comparisons, where noisier 
images were obtained. And some pixels in Fig. 4 (f) was failed 
to be reconstructed. 

VI. CONCLUSION AND FUTURE WORK 

This work proposes a quantized, lightweight neural 

network for fast FLIM applications. It achieved comparable 

accuracy to the FP32 datatype. And higher fidelity was 

achieved compared to the NLSF algorithm regarding 

synthetic datasets. For real-data evaluation, it successfully 

restored lifetime parameters from different fluorescence 

components. We will investigate more quantization schemes 

with a shorter bit length in future work. It will be implemented 

on FPGAs and integrated with TCSPC cards to achieve on-

chip processing. Other hardware performance indicators such 

as latency or GOPS will be conducted.  
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