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Abstract— Multiplexed immunofluorescence provides an un-
precedented opportunity for studying specific cell-to-cell and
cell microenvironment interactions. We employ graph neural
networks to combine features obtained from tissue morphology
with measurements of protein expression to profile the tumour
microenvironment associated with different tumour stages. Our
framework presents a new approach to analysing and process-
ing these complex multi-dimensional datasets that overcomes
some of the key challenges in analysing these data and opens up
the opportunity to abstract biologically meaningful interactions.

I. INTRODUCTION

Novel tissue multiplexing imaging platforms [1], [2] al-
low the analysis of a broad range of cell types in the
tissue architecture context. These approaches open up new
opportunities for improving our understanding of disease,
monitoring therapeutic response, and the development of
high-dimensional clinical tests. Here, we are interested in
profiling the complex interaction between the tumour and
the immune system within the tumour microenvironment
(TME), which dictates the tumour progression. While current
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cancer classification highly relies on the extent of the primary
tumour (T), lymph node involvement (N) and metastatic
presence (M), visualising multiple protein targets in the same
tissue allows us to interrogate the role of adaptive immune
cell infiltration in colorectal cancer (CRC) prognosis.

The analysis of multiplexing data requires the combination
of spatial information that captures the changes in tissue
architecture with measurements of protein expression. When
compared to standard digital pathology, multiplexing datasets
are typically much smaller and contain imaging artifacts
and strong variations in protein expression, making this a
particularly challenging problem. Moreover, interpretability
is a key aspect when working with multiplexed data to
be able to link the analysis to any underlying biological
hypothesis.

Building on recent success of applying graph neural
networks (GNNs) to histopathology, we introduce a novel
framework for analysing multiplexed immunofluorescence
(IF) images using GNNs. Constructing graphs from multi-
plexed IF data is non-trivial due to the stated challenges.
Our approach overcomes these challenges by: (1) including
a selection of network metrics that capture the interactions
between the immune cells and the tumour; (2) a hierarchical
structure that considers both the cell-level and the spatial
tissue arrangement; (3) implicit denoising from the use of
message-passing; (4) data augmentation on the graphs to
account for the limited amount of training data; and (5)
the opportunity to interpret results in order to identify the
tissue areas contributing the most to the predictions. In
summary, we propose a GNN model to profile the tumour
microenvironment associated with different tumour stages in
an explainable setting.

II. METHODS

Figure 1 provides a summary of the overall approach. Prior
to the analysis, we carefully pre-process the data by applying
fluorescent image correction algorithms and subsequently
identify cell nuclei using a segmentation approach previously
validated on a different dataset. Rather than performing a
global analysis of the slide, we perform a local analysis in se-
lected regions of interest (RoIs)(see Fig. 1A). The two-layer
graph described in Section III-B is constructed to abstract the
key biological interactions of the underlying tissue. It first
captures the location of cells, certain morphological mea-
surements and protein expressions to form a cell-graph (Fig.
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1D). After message-passing, the updated cell embeddings are
aggregated at the tile level and concatenated with the set of
hand-crafted immune-interaction features that we describe
in Section II-D. The second set of graphs are constructed at
the RoI level, with nodes representing tile centroids to form
a tile-graph (Fig. 1B). These RoI-level graphs are then fed
into the model for pT stage prediction (Fig. 1C). Finally,
post-hoc explainability methods, presented in Section II-F,
are utilised to visualise the relationship between immune
interaction profiles and prediction of tumour stage.

A. Multiplexed IF data

The Perkin-Elmer Vectra platform features an immune
panel consisting of six fluorescent markers. DAPI is used
for nuclei segmentation. Cytokeratin is used to delineate
epithelial cells. A further four markers are included to depict
immune cells: CD4 for helper T-cells, CD8 for cytotoxic T-
cells, CD20 for B-cells, and Foxp3 for regulatory T-cells.
The system also provides a seventh channel corresponding
to the imaging system’s autofluorescence isolation capacity
which improves signal-to-noise ratio [3].

B. Segmentation of nuclei and cell phenotyping

Multiplexed image data requires careful preprocessing as
tiles are scanned independently. Hence before segmentation,
a background and shading correction [16] was performed to
improve the stitching of individual image tiles. Moreover,
contrast limited adaptive histogram equalisation (CLAHE)
[6] was used to improve contrast in the DAPI channel,
which is used for segmentation. The segmentation network
employed to identify cell nuclei consists of a 3-class (cell in-
side, cell boundary, background) modified U-Net architecture
comprised of the original U-Net [17] decoder and a ResNet
[18] encoder. The model was pre-trained on the fluorescence
samples from the publicly available BBBC038v1 dataset [19]
to ensure the correct identification of cells of different sizes
and to ignore DAPI positive fragments not corresponding
to actual cells. Segmentation masks were projected onto the
remaining channels to measure the average nuclei protein
expression. Cells were then assigned to the cell type corre-
sponding to the marker whose expression was located in the
highest percentile rank.

C. Two-layer graph representation

After image segmentation we define an undirected graph
G = (V,E), with vertices V and edges E. Similar to Pati et
al. [4] we employ a two-layer graph representation, with (1)
cell-graphs [5] constructed on small randomly sampled tiles,
where nodes represent nuclei centroids in order to quantify
local patterns of immune interaction, and (2) a tile-level
graph able to aggregate information from the multiple tissue
regions. The graph topology is represented by an adjacency
matrix A ∈ RN×N , and node features are represented by the
matrix X ∈ RN×D, with N = |V | and feature dimension
D. We construct A based on a distance threshold as follows:

Aij =

{
1 if d(i, j) < k
0 otherwise, (1)

where k determines which nodes in the graph are connected.
The choice of k is described in Section III-B.

D. Cell-graph feature extraction

We calculate a total of 68 handcrafted network metrics
at the cell-graph level to acquire information about the
distribution of each cell population of interest.

These include the average clustering and square clustering
coefficients, the assortativity, radius, density, transitivity, and
the closeness of each cell type population, as defined by
Schult et al. [8]. The ratios between each pair of immune cell
densities (e.g. CD4-CD8 ratio), a known prognostic factor
for cancer progression [9] are also computed. To measure
the degree of mixing between tumour and immune cells,
we additionally compute the ratio of immune-tumour to
immune-immune interactions [10].

E. Cell-graph and tile-graph neural network

We employ Graph Neural Networks (GNNs) to obtain
a graph representation H ∈ RN×P from our initial cell
embeddings H0 = X ∈ RN×D, where P is the number
of output features. Using the notation from [11] and [12],
we first perform a number of message passing steps to
obtain the node embeddings hv for each cell v in the cell-
graph CG, which we then combine into a global cell-graph
embedding hCG for each tile. The message passing consists
of an aggregation and combination of the neighbouring nodes
features. For the kth GNN layer:

a(k)v = AGG(k)
({

h(k−1)
u : u ∈ N (v)

})
(2)

h(k)
v = COMBINE(k)

(
h(k−1)
v , a(k)v

)
(3)

hCG = READOUT
({

h(k)
v | v ∈ CG

})
, (4)

where N (v) denotes the set of neighbours of v. We use the
graph convolutional network (GCN) operator defined in [13]:

h(k)
v = W

(k)
1 h(k−1)

v +W
(k)
2

∑
u∈N (v)

h(k−1)
u . (5)

The updated cell-graph embeddings hCG are then com-
bined with the selected network metrics mCG listed in the
previous sub-section to define the tile-graph embeddings for
each tile t:

h
(0)
t = CONCAT(mCG, hCG) . (6)

These tile embeddings ht for each tile t in the tile-graph TG
are then updated by applying Eqs. 2-3 again, where nodes
now correspond to tiles. The readout layer then combines
the information from the multiple tiles to obtain the final
embedding hTG for the RoI:

hTG = READOUT
({

h
(k)
t | t ∈ TG

})
. (7)
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Fig. 1. Overview of the proposed method described in Section II. The regions of interest correspond to the tumour centre (yellow and magenta), invasive
tumour front (red), background mucosa (green), and peritumoural stroma (blue).

F. Post-hoc explainability

We employ Integrated Gradients (IG) [14] in the tile-
graph to understand the significance of each tile node in
predicting tumour stage. We do so by computing the IG
attribution of each edge and aggregating the attributions of
the edges connecting each node. The IG edge attribution is
computed by comparing each edge mask with a baseline of
edge weights set to zero. Since we use unweighted graphs,
the initial edge weights are all one. The IG for each edge ei
is computed as follows:

IGei =

∫ 1

α=0

∂F (xα)

∂wei

dα, (8)

where xα corresponds to the original input graph but with all
edge weights set to α, wei denotes the current edge weight,
and F (x) is the output of the model for an input x. The
integral is approximated using a Gauss-Legendre quadrature.

In order to identify the key features impacting the predic-
tion, we further run the GNN Explainer model [15], which
maximises the mutual information MI between the prediction
of the trained model and that of the simplified explainer
model given by a subgraph GS and a subset of features T :
maxGS ,T MI(Y, (GS , T )).

III. EXPERIMENTS

A. Dataset

Paraffin-embedded tissue samples of 41 rectal primary
tumours were used to investigate the risk of disease pro-
gression and recurrence. Specialist GI pathologists reported
tumour stage on matching H&E slides: 25 of these samples
were assigned a pT1 tumour stage, while 16 samples were
considered to be more advanced (13 pT2, 3 pT3). Specific
regions of interest such as those shown in Fig. 1A were pro-
vided by a pathologist for the tumour centre, invasive tumour
front, background mucosa, and peritumoural stroma, guided
by the matched H&E image. Annotation areas correspond to

the standard 1mm diameter disk size used for biopsies and
tissue microarrays (TMAs), allowing for a future integrative
analysis with TMA cohorts.

B. Graph construction

RoIs of the size of 2048x2048 pixels corresponding to the
bounding box of the disk annotations are selected to investi-
gate immune-cell interactions across samples and regions.
From each RoI, 200 256x256 tiles are randomly chosen
to construct cell-graphs using NetworkX [8], with nodes
positioned at the centroid of each nucleus. We set k from Eq.
1 to be 30 pixels. This results in a small node degree as well
as a small number of disconnected nodes in order to reduce
graph complexity and facilitate metric computation. Given
the resolution of 20x, the 30 pixel threshold corresponds to
about 15µm—between two to three times the size of the
average diameter of the observed nuclei, 6µm—and captures
the immediate neighbourhood of each cell. Moreover, the tile
of 256x256 pixels captures a length of about 120µm hence
the size of the tile is within a distance within which the cell
can communicate effectively [7].

For each node, we record the average expression for the
five markers of interest (CD4, CD8, CD20, FoxP3, CK),
the area occupied by the cell, and the cell solidity. These 7
features are inserted as node features. We subsequently per-
form three message-passing steps to update the node features
by encompassing information from nearby cells, which are
aggregated using mean pooling and transformed into a vector
of length 16. Additionally, for each tile, we compute the set
of 68 hand-crafted immune-interaction features enumerated
in Section II-D. Nuclei and cell-interaction features are then
concatenated into a vector of length 84 per tile. The second
set of graphs are constructed at the RoI level, with nodes
representing the 200 sampled tiles positioned at their tile
centroids and node features corresponding to the selected 84
attributes. These RoI-level graphs are then fed into the model
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TABLE I
MEAN AND STANDARD DEVIATION OF ROI-LEVEL CLASS-WEIGHTED F1-SCORES MEASURED ON THE TEST SET AND AVERAGED OVER THREE

DISTINCT TRAIN-TEST SPLITS.

Region GCN Mean pool GCN Add pool GCN Max pool MIL Attention pool MIL Mean pool MLP
All 58.4±1.7 61.6±4.2 61.6±3.2 55.1±1.4 49.5±1.6 49.0±0.7

Centre 53.8±6.4 60.7±8.9 58.0±0.1 50.0±2.1 49.7±3.4 49.2±0.8

Front 63.6±8.5 60.4±9.9 72.9 ±7.8 54.4±5.8 40.0±7.1 48.9±0.7

Mucosa 47.5±12.6 50.2±8.1 60.8±9.9 63.5±11.3 46.1±9.1 48.4±1.9

Stroma 56.6±7.4 58.9±8.5 61.6±6.5 57.7±3.9 53.0±4.5 48.4±1.2

for pT stage prediction.

C. Data augmentation

The augmented set is obtained by constructing the net-
works using a subset of 80% of the nodes at each step
(160 tiles) and by varying the threshold k that needs to be
surpassed for an edge to be included between two neighbours
by sampling a value in the pixel range {150, 175, 200, 225,
250}, resulting in a variety of tighter and sparser graphs.
The node subsampling and edge modifications ensure that
networks in the training set are sufficiently different to
avoid over-fitting. For the test set, only a single network is
constructed per RoI using the default distance threshold of
200 pixels for adjacency construction and the full set of tile
nodes in the RoI (200 tiles).

D. Implementation

The model consists of three GraphConv [13], [20] lay-
ers with ReLu activation and global pooling aggregation.
Experiments are conducted in PyTorch 1.7.0 using PyTorch
Geometric [20].

Data are split into training and testing at the patient
level. We use 70% (134) of the RoIs for training and 30%
(59) for testing. Due to the limited sample size, a pseudo-
validation set is constructed by randomly sampling (with pT
stratification) 10% of the pre-augmented training data, and
used for hyperparameter grid-search. Model performance is
measured according to their weighted F1-scores on the test
set. The model is trained using an L2-regularised Adam
optimiser and a weighted cross entropy loss. We employed
early stopping based on the pseudo-validation set. We tune
the hyperparameters using a grid search. The values that
provide the best performance in terms of class-weighted F1
score correspond to a dropout ratio of 0.5, a learning rate
of 10e-5, a weight decay of 10e-5, 32 hidden layers, and a
batch size of 64.

Two baseline models are considered: the first one consists
of a multi-layer perceptron (MLP) which takes as input the
average individual nuclei features (size, shape and marker
expression) without taking the cell topology into considera-
tion. The second consists of a multi-instance learning (MIL)
approach which takes as input both the cell-level features
and the cell-graph features, computed as in section II-D. We
consider this model with both attention and average pooling.

E. Post-hoc explainability

We compute Integrated Gradients [14] using the model
interpretability library for PyTorch Captum [21] to obtain

Fig. 2. An example of an invasive front RoI for a pT0 sample classified
correctly. (Left) Tile-graph of 200 256x256 tiles overlaid on DAPI. (Centre)
Cell-graph corresponding to the 2048x2048 RoI: blue - epithelial, green - T-
helper, red: cytotoxic T-cell, magenta: T-reg, yellow: B-cell. (Right) Top ten
tiles classified as important using integrated gradients for predicting tumour
stage from immune interaction features.

an importance score of individual edges and nodes for the
pT stage prediction of each instance in the test set. We
can then compare areas of predictive importance across the
different selected RoI regions. The GNN Explainer model
(implemented using PyTorch Geometric) is used to obtain
feature importances across all tiles in the test set.

F. Results and discussion

As shown in Table I, in the majority of the graph-
based experiments the invasive front was the region with
the highest predictive power, followed by the peritumoural
stroma, known to have a high prognostic impact. Moreover,
all the graph-based models present an improvement over
the baseline models: this result suggests that the network
topology plays an important role in tumour stage classifi-
cation. Among the graph-based models, global max-pooling
performed better than average pooling. Due to the limited
number of samples with pT3, the classification of these
RoIs was challenging. However, the majority of these RoIs
were predicted to have pT2 stage, demonstrating that the
model has learned to identify immune features related to
an advanced cancer state. The proportion of interactions be-
tween CD4+ and CD8+ cells, the interactions between FoxP3
positive and epithelial cells, and the average expression of
CD20 were determined by GNN Explainer as the top three
features affecting tumour stage classification. Fig. 2 shows
an example of tiles selected by IG as important in an invasive
front RoI: it can be observed that the network considers a
large cluster of regulatory T-cells as the most significant area
for the prediction.

IV. CONCLUSIONS

Our experiments demonstrate that the proposed two-layer
GNN opens up new possibilities for interrogating multi-
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plexed immuno-fluorescence images. As the model is capable
of predicting tumour stage with an F1-score above 60%, we
conclude that the model captures disease relevant information
at a local level. The improvement over the baseline observed
with the models that use GCNs, which are able to capture
more complex spatial interactions, suggests that effectively
modeling the cell topology plays an important role in the
tumour stage classification. However, the improvement in
performance is not the only advantage gained through the
use of the proposed method. First, we were able to naturally
denoise the marker expressions of the cells by means of
the message-passing steps. Second, our hierarchical graph
structure generated biologically meaningful entities which
would not have been otherwise acquired through the use
of convolutional neural networks. Third, by applying post-
hoc explainability methods on the tile-graph we were able
to identify the regions that contributed the most to the
classification hence profiling local interaction patterns. This
will enable a follow up analysis to identify explicit entities at
the cellular and tissue level that are of biological and clinical
interest.
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