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Srividya Tirunellai Rajamani1, Ludwig Küster3, Mathias Harrer3,4, Elena Heber3, Inga Grossmann3,
David D. Ebert3,4, Björn W. Schuller1,2

Abstract— Previous studies have shown the correlation be-
tween sensor data collected from mobile phones and human
depression states. Compared to the traditional self-assessment
questionnaires, the passive data collected from mobile phones is
easier to access and less time-consuming. In particular, passive
mobile phone data can be collected on a flexible time interval,
thus detecting moment-by-moment psychological changes and
helping achieve earlier interventions. Moreover, while previous
studies mainly focused on depression diagnosis using mobile
phone data, depression forecasting has not received sufficient
attention. In this work, we extract four types of passive features
from mobile phone data, including phone call, phone usage,
user activity, and GPS features. We implement a long short-
term memory (LSTM) network in a subject-independent 10-
fold cross-validation setup to model both a diagnostic and a
forecasting tasks. Experimental results show that the forecasting
task achieves comparable results with the diagnostic task,
which indicates the possibility of forecasting depression from
mobile phone sensor data. Our model achieves an accuracy of
77.0 % for major depression forecasting (binary), an accuracy
of 53.7 % for depression severity forecasting (5 classes), and a
best RMSE score of 4.094 (PHQ-9, range from 0 to 27).

I. INTRODUCTION

Depression, as a common mental health disorder, is typ-
ically characterised by low mood, overthinking, feelings of
hopelessness, and decreased motivation. In extreme cases,
people experiencing severe depression may have suicidal
thoughts. Depression affects not only individual patients
and their families, but also their social circle and overall
economic development [2]. In Germany, depression is the
leading cause of the inability to work or early retirement
and is the trigger for about half of all suicides each year.
While most people with depression are treated in primary
care settings, more than 50 % of people are not identified or
effectively treated [1].

The long-lasting primary method of clinical depression
diagnosis relies on the self-assessment questionnaires, such
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as the Patient Health Questionnaire (PHQ)-2 and PHQ-9.
These questionnaires have shown a strong correlation with
actual human health. However, collecting them is usually
time-consuming and has fixed time intervals, which can
hardly detect the moment-by-moment psychological changes
and achieve timely interventions.

Recently, the rise of wearable devices and mobile phones
has made sensor data more readily available. Previous studies
have explored the possibility of using sensor data to diagnose
human mental health states and have shown the effective-
ness [3, 4]. Rohani et al. [5] provided a systematic survey
for the correlations between sensor data and depressive mood
symptoms. Compared to the self-assessment questionnaires,
the passive data collection does not require an interaction
with the device and can be collected at a more flexible time
interval, which means that it can reflect immediate changes
in psychological state, potentially enabling early diagnosis,
prediction of disease progression, and timely adjustment of
treatment plans.

However, previous studies mainly focused on depression
diagnosis based on mobile phone data, i. e. , the prediction of
depression state and/or severity for a given time-period (e. g.
, on a daily, weekly, or bi-weekly basis) given concurrent fea-
tures. In contrast, the forecasting of depression progression,
i. e. , the prediction of state/severity on a given time-period
given features further in its past, has not received sufficient
attention. Saeb et al. [6] has shown the effectiveness of using
features extracted from mobile phone GPS and usage of
sensors to diagnose if participants have depressive symptoms
(PHQ-9≥5). Masud et al. [7] extracted 12 features from
GPS and acceleration data and classified participants’ weekly
PHQ-9 into three groups based on that week’s features.
Lu et al. [8] used the GPS, activity, sleep, and heart rate
data collected from mobile phones and wearable devices to
distinguish the participants with depression and diagnosed
their clinical severity. They also only used the features from
the same week to make the weekly diagnosis.

Different from previous work, we design two tasks for
both diagnosis and forecasting: the first task is to diagnose
the current week’s PHQ-9 score according to data from
the same week, while the second task is to forecast the
PHQ-9 score at the end of next week based on data from
the current week. We treat the diagnosis and forecasting of
PHQ-9 as a regression problem and implement an LSTM
model combined with a subject-independent 10-fold cross-
validation. We use a portion of passive data from a newly
collected dataset called MAIKI, which includes phone call,
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TABLE I: A total of 19 features extracted and their descriptions.

Data type Extracted feature Description
total calling frequency the number of times that a participant answers and makes phone calls during a day.

total calling duration the total time in minutes that a participant spends each day answering and
making phone calls.

non-working time calling frequency the number of times that a participant answers and makes phone calls at times other
than 8 am to 6 pm during a day.

non-working time calling duration the total time that a participant answers and makes phone calls at times other than
8am to 6pm during the day.

number of missed calls the number of calls that are marked as missed during the day.
number of contacts the number of contact a participant answers and makes phone calls during the day.
calling entropy the variability of calling durations a participant spends in contacts during the day.

Phone call data

normalised calling entropy calling entropy divided by the logarithm of the number of contacts during the day.
phone usage frequency [1] the number of times that a participant interacts with their phone during a day.

Phone usage data phone usage duration [1] the total time in seconds that participants spend each day interacting with their mobile
phones.

lock screen duration the total time in seconds that participants lock their mobile phones during the day.
number of used apps the number of applications that a participant uses during the day.
number of midnight used apps the number of applications that a participant uses between 0am to 5am during the day.User activity data

sleep time
sleep time is considered to be between the last time an app was used in the previous
day (or in the same day before 2 am if available) and the first time an app was used
after 5 am

location variance [1] the logarithm of the sum of the statistical variances in the latitude and the longitude of
all GPS coordinates in the day.

location entropy [1] the variability of the time that participants spend in significant places in the day.
normalised location entropy [1] the location entropy divided by the logarithm of the number of significant places.

time at home [1]

Home is defined as the most frequent significant place where a participant spent
the most time between 0 am to 6 am.
Time at home is defined as the percentage of time a participant spent at home
relative to other significant places.

GPS data

total distance [1] the total distance covered by a participant during the day.

phone usage, user activity, and GPS data. We choose root-
mean-square error (RMSE) as the evaluation metric and use
two methods categorising PHQ-9 scores into different sub-
groups. We distinguish the participants with major depression
(PHQ-9≥10) from those without. Additionally, we report a
5-class depression severity. Results show that the forecasting
task achieves comparable results with the diagnostic task,
which indicates the possibility of forecasting depression from
mobile phone data. In order to compare different algorithm
options and parameter settings, we also compare three dif-
ferent clustering methods to identify significant places (GPS
coordinates that need to be considered the same place and
meet certain conditions) from the GPS data.

The rest of the paper is organised as follows. Section II in-
troduces the newly collected MAIKI dataset and our feature
extraction methods. Section III describes our task design,
experimental setting, and evaluation approaches. Section IV
outlines the obtained results for diagnostic and forecasting
tasks. Section V concludes the paper with a brief discussion.

II. DATASET AND FEATURE EXTRACTION

A. MAIKI dataset

The MAIKI dataset is collected from the “Mobile daily
living therapy assistant with interaction-focused artificial
intelligence for depression” (MAIKI) project. A total of
48 people participated in this project and carried mobile
phones with a sensor data acquisition app for 8 weeks. The
study procedures were approved by the ethics committee
of the Friedrich-Alexander-University Erlangen-Nuremberg
(385 20B). The dataset has both active data from self-
assessment questionnaires and passive data from mobile

phone sensors. The active questionnaire data includes the
weekly PHQ-9 and other questionnaires data such as Gener-
alised Anxiety Disorder (GAD-7) and Perceived Stress Scale
(PSS-4). The passive data includes phone call, phone usage,
user activity, GPS, battery, phone text, ringtone setting, and
step count data, which were collected during each day.

In this work, we focus only on using (parts of) the passive
data, namely phone call, phone usage, user activity, and GPS
data to diagnose and forecast the weekly PHQ-9 scores.
Table I shows an overview over all features per data type.
In Section II-B, we outline the procedure followed to extract
the features of each data type, placing an emphasis on GPS
features which follow a more involved process.

B. Feature extraction

1) Phone call, phone usage, and user activity features:
We extract a total of 8, 2, and 4 features from phone
call, phone usage, and user activity data, respectively. The
descriptions of these features can be seen in Table I. These
features are all extracted at a daily level for each participant.

2) GPS features: The extraction of GPS features is com-
posed of three steps. The first step is to preprocess the raw
GPS data. We remove GPS coordinates with positioning
accuracy >80th percentile of all participants’ GPS accuracy
and additionally remove GPS measurements taken at a speed
less than 0. Since only the GPS coordinates in the stationary
state should be used in the following clustering step to
identify significant places, we remove the GPS coordinates
in the transition state with a speed of more than 1.4 m/s.
The second step aims to aggregate the GPS coordinates
of the same location into a cluster. The cluster that meet



certain conditions is considered a significant place. To com-
pare different algorithm options and parameter settings, we
implement three clustering algorithms described below.

Time-based clustering. The basic idea of this algorithm
is to cluster the GPS coordinates along the time axis and
remove the intermediate coordinates between significant
places [9]. This algorithm computes the place clusters incre-
mentally as the next GPS coordinates come in. The algorithm
has two parameters: the distance threshold Dtime is the
maximum distance at which the next coordinate is considered
to belong to the current place cluster; the time threshold
Ttime is the minimum time duration for which the current
cluster is considered as a significant place. When a cluster is
a significant place, the algorithm checks whether the cluster
should be merged into one of the existing clusters according
to the distance between their centroids (the merged distance
threshold equals Dtime/3).

K-Means clustering. The typical K-Means clustering
algorithm requires a predetermined number of clusters k. But
in our cases, the number of clusters can vary widely among
different participants. Following Saeb et al. [6], we first set k
to 1 and increase the cluster number until the distance of the
farthest point in each cluster to its cluster centre is less than a
threshold Dkmeans. This threshold determines the maximum
radius of a cluster.

DBSCAN clustering. The Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) algorithm has
two parameters: the eps is the maximum distance between
two coordinates for one to be considered as belonging to the
same cluster of the other; the minSamples is the minimum
number of data points to form a cluster. This algorithm is
generally regarded as particularly suitable for GPS data, as
it allows to identify clusters of varying shapes and is robust
to outliers [10].

The third step is extracting the GPS features. The descrip-
tion of these features can be found in Table I. We perform
clustering algorithms on all days of data for each participant,
then extract GPS features for each participant on each day.

III. EXPERIMENTAL SETUP

We design two tasks for diagnosis and forecasting. The
first task is to diagnose the current week’s PHQ-9 score
according to data from the same week. The second task is
to forecast the PHQ-9 score at the end of next week based
on data from the current week. For example, the diagnostic
task is to predict the PHQ-9 score on day 7 based on the
data from day 1 to day 7. In contrast, the forecasting task
is to predict the PHQ-9 score on day 14 based on the data
from day 1 to day 7. In order to maximise the utilisation
of day-level features, we do not use the average of features
in a week but give the same weekly PHQ-9 score as the
label to the daily data in that week. We treat these two
tasks as a regression problem and implement an LSTM
model combined with a subject-independent 10-fold cross-
validation to complete these tasks. The model has one LSTM
layer, one fully connected layer, and a ReLU activation
function. The learning rate and the hidden size of LSTM

TABLE II: Scale and 5-class scheme of depression severity.

PHQ-9 Score Depression Severity
0–4 Minimal depression
5–9 Mild depression

10–14 Moderate depression
15–19 Moderately severe depression
20–27 Severe depression
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Fig. 1: Performance comparison for PHQ-9 (range from 0
to 27) diagnosis (left) vs forecasting (right) using different
feature sets.

are set to 0.001 and 4, respectively. We choose the mean
squared error as the loss function. The model is trained by
gradient descent and using the Adam optimiser with β1 and
β2 set to 0.9 and 0.999.

As for the time-based clustering algorithm for GPS fea-
tures, since the GPS data from our dataset is recorded
every 5 minutes, we set Ttime to 15 minutes and Dtime to
40 metres [9]. For k-means clustering, we set Dkmeans to
500 metres [6]. For DBSCAN, we set eps to 30 metres and
minSamples to 3 [10]. We use Haversine distance as the
distance function.

We choose the RMSE as the evaluation metric for regres-
sion and utilise two methods categorising PHQ-9 scores into
subgroups. We set the cutoff value to 10 to distinguish the
participants with major depression (PHQ-9≥10) [11] from
those without and report the 2-class classification accuracy.
We evaluate the predicted severity of depression according
to Table II and report the 5-class classification accuracy.

IV. RESULTS

A. Results of diagnostic task

Table III shows the results of diagnosis the current week’s
PHQ-9 based on data from the same week. We calculate the
baseline using the mean value of PHQ-9. Specifically, we
assume that all the predictions from the baseline model are
the mean value and then use this assumed mean prediction to
calculate the RMSE with the actual labels. The results of all
three methods are better than the baseline model. The optimal
result is obtained from K-Means, which achieves an accuracy
of 78.4 % for major depression diagnosis, 54.5% for depres-
sion severity diagnosis, and a best RMSE score of 4.184. The



TABLE III: Results of diagnosing/forecasting the PHQ-9 (range from 0 to 27) at the end of the current/next week based on
the data of this week. Accuracy [%] reported for major depression (binary) and depression severity (5-class) tasks whereas
RMSE is reported for PHQ-9 prediction. Baseline computed using mean PHQ-9 score of the training set. Mean performance
and the standard deviations (in brackets) are reported over all 10 folds.

Major Depression (% Acc.) Depression Severity (% Acc.) PHQ-9 (RMSE)

Model Diagnosis Forecasting Diagnosis Forecasting Diagnosis Forecasting

Baseline 60.6 56.7 49.7 43.0 4.858 4.915
K-means 78.4 (3.5) 77.0 (6.7) 54.5 (7.1) 53.7 (6.4) 4.184 (0.569) 4.094 (0.619)
DBSCAN 74.4 (7.2) 71.9 (6.6) 52.5 (5.3) 47.4 (7.8) 4.443 (0.431) 4.401 (0.349)
Time-based 78.9 (4.6) 75.7 (5.3) 54.5 (4.7) 48.5 (7.3) 4.203 (0.621) 4.556 (0.445)

time-based clustering algorithm obtains suboptimal results. It
is worth mentioning that, contrary to previous findings that
the DBSCAN clustering algorithm may be more suitable for
GPS data [10]; DBSCAN obtained the worst results in our
setting.

B. Results of forecasting task

Table III additionally shows the results of forecasting the
PHQ-9 score at the end of next week based on data from the
current week. The K-Means algorithm still obtains optimal
results, which achieves an accuracy of 77.0 % for major
depression forecasting and 53.7 % for depression severity
forecasting. The best RMSE score of 4.094 is marginally
lower than that of the diagnostic task, which means that
the forecasting task achieves comparable results with the
diagnostic task. The results indicate that it is possible to
forecast depression based on mobile phone data.

C. Feature comparison

Finally, in Figure 1 we show a performance comparison
for PHQ-9 diagnosis and forecasting using different features.
We observe that the user activity features obtain the best
individual performance for both tasks. The performance of
the phone call features is worse, potentially because this
data is more sparse as subjects accept and conduct calls
less frequently than using the phone for other purposes.
Combining all information in the all feature sets results in a
slight performance boost.

V. CONCLUSION

In this work, we investigated the potential of using pas-
sively collected mobile phone data for depression diagnosis
and forecasting. We have shown that forecasting (predicting
PHQ-9 scores, major depression, and depression severity)
1-week ahead of the collected data is possible, with perfor-
mance close to that of predicting the current week (diagno-
sis). These results showcase the potential of such features
of timely diagnosis and change-of-state prediction; both
valuable targets for future digital health applications. These
tasks are best modelled using a combination of features, of
which user activity are the most important. In addition, our
experiments show that K-Means clustering for generating
GPS features fares better than DBSCAN and time-based
clustering; a finding which contrasts previous work showing
the latter to be better. This indicates that the performance

of such algorithms might be dataset-dependent, and thus a
cross-study comparison would be necessary to identify the
strengths and weaknesses of each for depression detection.
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