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Abstract— Currently, continuous glucose monitoring sensors
are used in the artificial pancreas to monitor blood glucose
levels. However, insulin and glucagon concentrations in different
parts of the body cannot be measured in real-time, and
determining body glucagon sensitivity is not feasible. Estimating
these states provides more information about the current system
status, facilitating improved decision-making by the model-
based controller. In this regard, the aim of this paper is
to design a nonlinear high-gain observer for a bi-hormonal
artificial pancreas in the presence of measurement noises, model
uncertainties, and disturbances. The model used in the observer
is based on an existing intraperitoneal nonlinear animal model
in the literature. This model is modified by assuming that
insulin can directly transfer from the peritoneal cavity to
the bloodstream. Based on a set of realistic assumptions, one
model is considered after each hormone infusion, and two
observers are separately designed. The model is divided into
the insulin-phase and glucagon-phase models based on a set of
realistic assumptions. Thereafter, two high-gain observers are
designed separately for these phases contributing to estimating
the non-measurable states. The observer error is proven to be
locally uniformly ultimately bounded, and it is verified that
any asymptotically stable control laws remain stable in the
presence of the observer. The performance of the observers with
different gains is evaluated for a scenario with multiple insulin
and glucagon infusions. The proposed observer converges to a
finite error, according to the results.

Clinical relevance— In Type 1 diabetic patients, the devel-
oped observer can be employed in a closed-loop artificial pan-
creas to improve the performance of model-based controllers.
It estimates the key states, which are necessary for forecasting
the body’s response to insulin and glucagon boluses.

I. INTRODUCTION
Glucose homeostasis is a mechanism of critical importance

for sustaining life in humans through the use of glucose as
a source of energy. One of the main organs involved in this
mechanism is the pancreas. The pancreas regulates glucose
in the body autonomously and continuously. The glycemic
control is primarily achieved through the pancreas’ endocrine
hormones balanced through a negative feedback loop. Insulin
and glucagon are the essential pancreatic hormones that
affect the blood glucose level (BGL). Insulin (produced by
beta cells in the pancreas) decreases BGL by either storing
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excess glucose mainly in the liver and muscles or allowing
body cells to utilize glucose as fuel. Glucagon (produced by
pancreatic alpha cells) raises BGL by releasing glucose that
has been stored as glycogen in the body.

Type 1 diabetes (T1D), or insulin-dependent diabetes, is
a chronic disease where the pancreas produces no or little
insulin. T1D has an unknown etiology. In most cases, T1D
is caused by a reaction of the immune system destroying
the beta cells of the pancreas. Other possible explanations
include genetics, viral exposure, and other environmental
variables. Impaired glucagon production and release are
also common as a consequence of beta cells destruction.
Therefore, the body becomes incapable of maintaining a
normal BGL [1], [2].

An artificial pancreas (AP) that consists of subcutaneous
BGL sensor(s), insulin/ and glucagon pump(s), and a control
algorithm is the current treatment for T1D disease. It mimics
the natural endocrine pancreas function by automatically
delivering external insulin and glucagon in response to the
changes in BGL. Different versions of single-hormone APs
that infuse only insulin are currently available on the market
[3]. However, since these systems lack glucagon, there is
a substantial risk of low BGL if unannounced physical
activities are performed. Dual-hormone APs are under de-
velopment and the prior clinical trials show their advantages
in reducing the number of hypoglycemia episodes [4].

It is possible to deliver hormones intravenously (IV),
subcutaneously (SC), and intraperitoneally (IP). Although
the IV route is fast, it is not a practical continuous solution
due to the possible health complications. SC infusion is the
most common approach in delivering insulin in current APs.
However, due to the SC route’s absorption delay, the existing
APs, even with the most advanced control algorithms, are
ineffective in dealing with unannounced meals [5].

The IP drug delivery pathway has been shown to have
faster pharmacokinetics than the SC pathway [3]. Further-
more, in IP insulin infusion, the majority of the insulin
absorbs into the portal vein (PV) and is then delivered to
the liver. While in SC infusion, insulin first absorbs into the
blood circulation system before reaching the liver. As a re-
sult, the IP insulin infusion seems to be physiologically more
similar to pancreatic functionality. Moreover, Toffanin et al.
tested their AP with IP infusion on the modified UVA/Padova
simulator [6] and showed that the meal announcement is not
needed [5].

Model-based controllers, such as model predictive control
(MPC), are the most commonly used control approaches in



APs due to the constraints and the delays [7]. However, BGL
is the only real-time measurable output of the system, while
the other states essential for prediction must be estimated.
In this paper, a high-gain observer is developed to estimate
non-measurable states based on a modified version of the
nonlinear bi-hormonal-glucose model proposed in [8]. High-
gain observer is chosen due to its implementation simplicity
and its robustness against large perturbations and model
uncertainties. In spite of measurement noise, model mis-
matches, and disturbances, the proposed observer is proven
to converge to a bounded error under some assumptions.
Furthermore, the Lyapunov theorem is used to demonstrate
that any asymptotically stable control approach will remain
stable when the designed observer is used in the control loop.

The paper is organized as follows: In Section II, the
modified version of the nonlinear bi-hormonal-glucose model
is introduced and practical assumptions for designing the
observer are made. Section III presents the high-gain ob-
servers designed for the insulin and glucagon phases and the
convergence analysis. Results are discussed in Section IV.
Finally, conclusions are exposed in Section VI.

II. MATHEMATICAL MODEL AND ASSUMPTIONS

The nonlinear bi-hormonal-glucose model developed by
Zazueta et al. [8] describes the interaction of BGL with IP
insulin and glucagon, making it appropriate for bi-hormonal
APs. In order to ensure structural identifiability, the effect of
the insulin in the intermediate compartment is ignored and
the order of the model is reduced in their final model.
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Fig. 1. Block diagram of the insulin compartment.

A modified version of this model is used to construct the
observer in this paper. This modified version is as follows

Ġ = − [k1 + kII + kIcIc]G+ kHHf(ξ) +R (1)

İ = γcI
p
c + βBIp − kpI (2)

İc = αIp − (γc + γ)Iqc (3)

İp = −(βA + βB + α)Ip +RIuI(t) (4)

Ḣ = −nH + n2h1 (5)

ḣ1 = −n1h1 +RHuH(t) (6)

ξ̇ = x1 [(kII + kIcIc)G]− x2[Hf(ξ)]− x3ξ (7)

where f(ξ) = ξa for 0 < a ≤ 1 (where a = 1 in the
original model). As it is shown in Fig. 1, the pathway of
direct insulin transportation from the peritoneal cavity to
the blood is considered in this model as described in [9].
In addition, −x3 ξ is added in (7) to model the glucagon
sensitivity decrease due to the basal endogenous glucagon
production. The states, inputs, and parameters of the model
are described in Table I.

TABLE I
STATES, PARAMETERS, AND INPUTS OF THE MODEL.

Symbol Description Unit
States

G Blood glucose concentration. mmol/L
I Blood insulin concentration. mU/L

Ic
Insulin concentration in the intermediate
compartment. mU/L

Ip Insulin concentration in peritoneal cavity. mU/L
H Blood glucagon concentration. pmol/L
h1 Glucagon concentration in peritoneal cavity. pmol/L
ξ Glucagon sensitivity. dimensionless

Inputs
R IV exogenous glucose infusion. mmol/L/h
uI IP insulin bolus. U
uH IP glucagon bolus. µg

Parameters

k1
Insulin-independent removal rate of glu-
cose. 1/h

kI , kIc Insulin-dependent removal rates of glucose. L/mU/h
kH Glucose response to glucagon rate. 1/h
kp, γ,
βA, n Consumption and degradation rates. 1/h

γc, α,
βB , n1,
n2

Transport rates. 1/h

a, p, q Powers. dimensionless
RI Conversion parameter. 1/L/h
RH Conversion parameter. pmol/µg/L/h
x1 Conversion parameter. L/mmol
x2 Conversion parameter. L/pmol/h

x3
Decrease rate of glucagon sensitivity due to
endogenous glucagon production. 1/h

As mentioned in the introduction, a state observer is
needed to estimate the non-measurable states for a model-
based controller, such as an MPC, to make better control
decisions. To design a high-gain observer, the following
assumptions are considered:

1) The amounts of insulin and glucagon in the peritoneal
cavity are represented by Ip and h1. The inputs and
parameters used in (4) and (6) are assumed to be known.
Therefore these states can be calculated, and there is no
need for the observer to estimate them.



2) Insulin and glucagon are hormones with reverse effects
on BGL. It is not typical to design controllers in
AP to use these hormones simultaneously or close to
each other. Therefore, an observer during each of these
hormone infusions can be designed separately.

3) For simplicity, it is assumed that p = 1 and q = 1.
Two different models are considered, one during the

insulin phase and the other during the glucagon phase, in
order to design the observers:

• Insulin-phase Model

ĠI = − [k1 + kII + kcIc]GI + kHĤf(ξ̂) +R (8)

İ = γcIc + βBIp − kpI (9)

İc = αIp − γcIc − γIc (10)
ym = GI + v (11)

where GI is blood glucose concentration during the
insulin phase, v is the measurement noise, and ym is the
measured BGL. Moreover, Ĥ and ξ̂ are the estimated
states from the glucagon phase.

• Glucagon-phase Model

ĠH = −
[
k1 + kI Î + kIC Îc

]
GH + kHHf(ξ) +R

(12)

ξ̇ = x1

[(
kI Î + kIc Îc

)
G
]
− x2[Hf(ξ)]− x3f(ξ(t))

(13)

Ḣ = −nH + n2h1 (14)
ym = GH + v (15)

where GH is blood glucose concentration during the
glucagon phase. Î and Îc are estimations from the
insulin phase.

It is worth mentioning that each of these models is observ-
able. In the next section, a high-gain observer is designed,
and its convergence and error bounds are analyzed.

III. HIGH-GAIN OBSERVER AND CONVERGENCE
ANALYSIS

The high-gain observer is one of the most commonly used
nonlinear observers that considers both measurement noises
and model uncertainties [10]. In this section, two high-gain
observers are proposed for insulin phase and glucagon phase
models.

A. Nominal Form of Models

To simplify the stability analysis and take advantage of the
high-gain observer, each model must be transformed into a
nominal form [11]. For this purpose, the new states for the
insulin-phase and glucagon-phase models are defined as

S1
def
=

[
p1 q1 r1

]T
(16)

S2
def
=

[
p2 q2 r2

]T
(17)

where [p1, q1, r1]
T and [p2, q2, r2]

T are defined in (18) and
(19), respectively. In these two equations, e1 ≜ kIkp, e2 ≜

−kIγc − kc (γc + γ), e3 ≜ kca + kIβB , e4 ≜ (k1 + kI Î +
kIc Îc), and e5 = kHf(ξ).

The state-space models are transformed into the following
equations for i=1,2:

Ṡi = ASi +B φi (Si, ui, R) (20)

ym = C Si + v (21)

where φi (Si, ui, R) ≜ ṙi, u1 ≜ Ip, u2 ≜ h1,

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0
0
1


, and C =

[
1 0 0

]
. Furthermore, ∥v∥ < µ for positive

values of µ as the maximum amplitude of measurement
noise.

B. High-Gain Observer

A high-gain observer is designed based on the formulation
proposed in [11], [12] as follows

˙̂
Si = AŜi +Bφoi

(
Ŝi, ui, R

)
+

1

εi
Hi

(
ym − CŜi

)
(22)

where Ŝi for i = {1, 2} is the estimation of Si, εi is the
inverse of observer gain, and φoi is the nominal form of φi.
It is notable that φi is locally Lipschitz function of Si and
ui. In addition, for arbitrary positive values of {ai1, ai2, ai3},
Hi is defined as follows

Hi =
[

a1i

εi
a2i

ε2i

a3i

ε3i

]T
(23)

Moreover, the weighted observer error for εi ∈ (0, 1) is
defined as

ηi = D (εi)3×3

(
Si − Ŝi

)
(24)

with

D (εi) ≜

 1 0 0
0 εi 0
0 0 ε2i

 (25)

In the rest of the paper, since both models are in the
nominal form, the index i is removed to increase readability.

Using (20) and (24), the dynamics of the system and the
weighted observer error can be augmented as below.

Ṡ = fs
(
S, S −D(ε)−1η,R

)
(26)

εη̇ = A0η + ε2B g
(
S, S −D(ε)−1η,R

)
+B2v (27)

where fs is the right-hand side of the (20) with assuming
that ui is function of observed states. Moreover,

A0 =

 −ai1 1 0
−ai2 0 1
−ai3 0 0

 , B2 =

 −ai1
−ai2
−ai3


, and g(. , . , .) = φ(. , . , .) − φo(. , . , .). In addition,
{ai1, ai2, ai3} should be selected in a way that eigenvalues
of A0 lay at left-half plane.



 p1
q1
r1

 def
=

 GI

− (k1 + kII + kcIc)GI

− (k1 + kItI + kcIc)
2
GI − (e1I + e2Ic + e3Ip)

 (18)

 p2
q2
r2

 def
=

 GH

−
(
k1 + kI Î + kIc Îc

)
GH + kHHf(ξ)

−e4ĠH + ae
a−1
a

5 H (x1e4GH − (x2H + x2) e5) + e5 (nH − n2h1) + e4G

 (19)

Based on the Lemma 1 in [11], the observer error (27)
converges to a bounded set for∥∥g (S,D(ε)−1η,R

)∥∥ < kg. (28)

proof: Since A0 is a Hurwitz matrix by design, a positive
symmetric matrix E can be found such that EA0+A0

TE =
−I . Considering W(η) = ηTEη as a Lyapunov candidate
function, its time derivation is

Ẇ ≤ −1

ε
∥η∥2 + 2ε∥η∥∥EB∥kg +

2

ε
∥η∥ ∥EB2∥µ. (29)

It can be shown that

Σ =
{
W (η(t)) ≤ ∥E∥

(
4∥EB∥kgε2 + 4 ∥EB2∥µ

)2}
(30)

is an invariant since Ẇ (η(t)) < −2/ε∥E∥ for W(η) /∈ Σ.
While ∥η∥ ≤ c1ε

2 + c2µ for W(η) ∈ Σ,
where c1 ≜ 4∥EB∥kg

√
∥E∥/

√
λmin(E) and c2 ≜

4 ∥EB2∥
√
∥E∥/

√
λmin(E). Therefore, the designed ob-

server converges to a bounded error which can be found
by

∥S(t)− Ŝ(t)∥ ≤ c1ε+ c2
µ

ε
≜ Fr(ε, µ) (31)

C. Stability of Closed-loop System in Presence of the De-
signed Observer

In this section, the stability of the closed-loop system in
presence of the designed observer is analyzed as in [12].

We assumed that the closed-loop system is asymptotically
stable for S ∈ Ω when η = 0. Therefore, there is a Lyapunov
function V (s) > 0 (and V (S) = 0 for S = 0) in which
V̇ (s) < −U(S). Where U(S) is positive function for S ∈ Ω.
Since f

(
S, S −D(ε)−1η

)
is bounded function and locally

satisfies the Lipchitz conditions, one can write∥∥f (
S,D(ε)−1η

)
− f(S, 0)

∥∥ ≤ L1

∥∥D(ε)−1η
∥∥ (32)

where L1 is positive constant. In addition, one can assume
∥dV/dS∥ ≤ L2 for a positive value of L2. Using this
inequalities, for η ̸= 0, one can write

V̇ (S) ≤ −U(S) + L1L2Fr(ε, µ) (33)

As it proven in [12], for bounded values of µ there is set of
positive values for ε in which Fr(ε, µ) < U(S)/L1L2. That
means the closed-loop system remains stable and (S(t), η(t))
will remain in {Ω× Σ}.
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Fig. 2. The scenario used for evaluating the observer performance.

IV. RESULTS

In the development of an AP, there are non-measurable
states that must be estimated so that the controller can make
better decisions in the control of BGL regarding the treatment
of people with T1D. The high-gain observer was designed
based on the modified nonlinear bi-hormonal-glucose model,
and its convergence to a bounded error was evaluated.

To test the effectiveness of the observer, the scenario
shown in Fig. 2 was considered where the sampling rate was
set to 5 minutes, and four insulin boluses {10, 20, 10, 20}U,
four glucagon boluses {75, 150, 150, 75}µg, and R(t) as
IV glucose infusion were given. Furthermore, the measured
BGL (ym(t)) was created by adding a measurement noise
with the maximum amplitude of 2 mmol/L and a sinusoidal
disturbance with amplitude 20% of the BGL and a frequency
of 0.4 rad/h in order to evaluate the observer’s robustness.
Notably, 15% parameter identification error was considered
to simulate the model uncertainties.

In order to analyze the error bound and time response of
the observer, two cases are considered. In each case, there
are two observers with the gain of ε1 and ε2, respectively, for
the insulin and glucagon phases. In the first case, relatively
high values (near to one) were chosen both for ε1 and ε2
while these values were relatively low in the second case.
The initial values were chosen randomly but the same for all
observers in both cases.

In Fig. 3 and Fig. 4, the estimation results of the case 1 and
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Fig. 3. Case 1: Performance of the designed observer with ε1 = 0.9 and
ε2 = 0.9. The constant blue lines in this figure show the values of the states
derived from the model, while the red dots are the outputs of the observers.

2 are shown, respectively. As can be seen, the estimations of
the states using the designed observers converged to actual
values values with a bounded error. It can be noted that the
performance of the designed observers with the lower gains
(case 2) were faster while error boundaries increased.

As can be deduced from Fig. 3 and Fig. 4, there is a
trade-off in selecting the observer gain, ε. The switching-
gain observer concept described in [11] was used to address
this issue. Based on this concept, it is better to initially have a
small observer gain since it allows the observer to converge
faster. Then, the observer gain can take a larger value Ts

min after ∥ym − ŷm∥ enters the switching zone to reduce
the observer error. Notably, Ts should be selected in a way
to prevent repetitive switching. The conditions for choosing
the switching zone and the switching time are defined in
[11].

The estimation results of the designed observers based on
switching-gain concept is presented in Fig. 5. The initial gain
set, ε1 = 0.32 and ε2 = 0.45, was switched to ε1 = 0.9 and
ε2 = 0.9, Ts = 45 min after entering the switching zone. As
expected, the observers convergence rates were shorter than
Case 1 while their errors are less than Case 2. Therefore, in
general, the performance of the observer was improved.

V. DISCUSSION

The model used in designing the observer is a modification
of the animal model presented in [8] which, according to
the best knowledge of the authors, is the only available bi-
hormonal IP model for control purposes. The performance of
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Fig. 4. Case 2: Performance of the designed observer with ε1 = 0.32
and ε2 = 0.45. The constant blue lines in this figure show the values of
the states derived from the model, while the red dots are the outputs of the
observers.
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the original model was tested on pigs. Due to the similarity
between pigs and human physiology, the model can be used
as an alternative for humans. However, the model’s perfor-
mance on T1D patients and consequently the performance
of the designed observer can also be evaluated using human
trials with realistic inputs.

In evaluating the performance of the observers, noise
and the disturbances in measurements, as well as the 15%
parameter identification error, were taken into account. The
glucose appearance rate, on the other hand, was assumed to
be known. However, as shown in (31) and (28), disturbance
in R which can be due to an unannounced meal, is calculated
in the observer error bound. Therefore, the observer will
remain stable for adequately limited disturbances due to
unannounced food intake.

VI. CONCLUSIONS

Estimating non-measurable states in the bi-hormonal-
glucose model provides a better understanding of the system
status and improves the decision-making of a controller in
AP. In this regard, two nonlinear high-gain observers were
designed separately for the insulin and glucagon phases.
It was mathematically shown that the observers are ro-
bust against measurement noises, model uncertainties, and
disturbances and the closed-loop stability was proven for
any asymptotically stable control approaches. Moreover, the
simulation results, also confirmed the convergence of the
observer to a bounded error. In addition, the performance
of the observer was improved by utilizing the switching-
gain approach. As a result, the intended observers can be
employed in APs to help model-based controllers make better
decisions. For example, whenever glucagon sensitivity is
estimated to be low, the controller should be extra cautious
about the dosage of insulin in order to prevent hypoglycemia.
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“Type 1 diabetes mellitus,” Nature reviews Disease primers, vol. 3,
no. 1, pp. 1–17, 2017.

[2] P. Herrero, J. Bondia, N. Oliver, and P. Georgiou, “A coordinated
control strategy for insulin and glucagon delivery in type 1 diabetes,”
Computer methods in biomechanics and biomedical engineering,
vol. 20, no. 13, pp. 1474–1482, 2017.

[3] C. Cobelli, E. Renard, and B. Kovatchev, “Artificial pancreas: past,
present, future,” Diabetes, vol. 60, no. 11, pp. 2672–2682, 2011.

[4] S. J. Moon, I. Jung, and C.-Y. Park, “Current advances of artificial
pancreas systems: A comprehensive review of the clinical evidence,”
Diabetes & Metabolism Journal, vol. 45, no. 6, pp. 813–839, 2021.

[5] C. Toffanin, L. Magni, and C. Cobelli, “Artificial pancreas: In silico
study shows no need of meal announcement and improved time
in range of glucose with intraperitoneal vs. subcutaneous insulin
delivery,” IEEE Transactions on Medical Robotics and Bionics, vol. 3,
no. 2, pp. 306–314, 2021.

[6] C. D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and
C. Cobelli, “The uva/padova type 1 diabetes simulator: new features,”
Journal of diabetes science and technology, vol. 8, no. 1, pp. 26–34,
2014.

[7] B. W. Bequette, “Algorithms for a closed-loop artificial pancreas: the
case for model predictive control,” Journal of diabetes science and
technology, vol. 7, no. 6, pp. 1632–1643, 2013.

[8] C. Lopez-Zazueta, A. L. Fougner et al., “Low-order nonlinear animal
model of glucose dynamics for a bihormonal intraperitoneal artificial
pancreas,” IEEE Transactions on Biomedical Engineering, 2021.

[9] V. Claassen, “Intraperitoneal drug administration,” Neglected factors
in pharmacology and neuroscience research, vol. 12, pp. 46–58, 1994.

[10] H. K. Khalil and L. Praly, “High-gain observers in nonlinear feedback
control,” International Journal of Robust and Nonlinear Control,
vol. 24, no. 6, pp. 993–1015, 2014.

[11] J. H. Ahrens and H. K. Khalil, “High-gain observers in the presence of
measurement noise: A switched-gain approach,” Automatica, vol. 45,
no. 4, pp. 936–943, 2009.

[12] K. D. Benam, H. Talebi, and M. A. Khosravi, “Full order high gain
observer design for image-guided robotic flexible needle steering,”
in 2019 27th Iranian Conference on Electrical Engineering (ICEE).
IEEE, 2019, pp. 1151–1156.


