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Abstract  A neural encoding model describes how single 
neuron tunes to external stimuli as well as its connectivity with 
other neurons. The connectivity illustrates the neuronal 
interaction within populations in response to the shared latent 
brain states. Understanding these interactions is crucial to 
computationally predict the neural activity, which elucidates the 
neural encoding mechanism A computational analysis on the 
neural connectivity also facilitates developing more point 
process decoding model to interpret movement state from neural 
spike observations for brain machine interfaces (BMI). Most of 
the previous point process models only consider single neural 
tuning property and assumes conditional independence among 
multiple neurons. The connectivity among neurons is not 
considered in such a Bayesian approach to derive the state. In 
this work, we propose a point-process analogue of Kalman Filter 
to model the neural connectivity in a closed-form Bayesian filter. 
Neural connectivity corrects the posterior of the state given the 
multi-dimension observation, and a Gaussian distribution is 
used to approximate the updated posterior distribution. We 
validate the proposed method on simulation data and compared 
with traditional point process filtering with conditional 
independent assumption. The result shows that our method 
models the neural connectivity information and the single 
neuronal tuning property at the same time and achieves a better 
performance of the state decoding. 

 
Clinical Relevance  This paper proposes a closed-form 

derivation of a point process filter based on Gaussian 
approximations. It can model both single neuronal tuning 
property and the neural connectivity, which is potential to 
understanding the neural connectivity computationally. 

I. INTRODUCTION 

Neural encoding represents how neurons modulate 
underlying states and external stimuli in environment. The 
neuronal activity tunes to the information at multiple spatial 
scales, typically in single neuron and in neural population [1], 
[2]. Single neuronal tuning property describes how an 
individual neuron encodes the stimuli or movement 
parameters such as preferred direction, modulation depth. 
Neural connectivity illustrates the interaction within neural 
ensembles in response to the shared latent brain states. Besides 
single neuronal tuning, it is also crucial for elucidating 
computational neural encoding models. On the one hand, 
neural connectivity has influence on neural encoding. It has 
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been found that spatially correlated spiking can strongly drive 
responses across sub cortical regions [3]. Valente et al. also 
found that correlations in neural populations can enhance the 
performance of discrimination tasks [4]. Considering both 
single neuron and neural ensembles in neural encoding can 
help computational analysis of the dynamical nature of brain 
function. 

Modeling neural connectivity also contributes to more 
accurate decoding in brain machine interface (BMI) [5]. BMI 
builds a closed-loop control system that links between neural 
activities and control commands on external devices, which 
aims to help restore lost functions of paralyzed patients [6]. 
Costa et al. studied how task-relevant neural populations 
coordinate and demonstrated that the shared latent states 
decomposed from the neural connectivity could contribute to 
better decoding the arm trajectory of monkey performing a 
center-out task [7]. Modeling how neurons interact to process 
information can help interpret the neural activity patterns in 
the observation space for BMI decoding [8]. 

In BMI system, point process model extracts state 
information from inter-spike intervals observation in a 
Bayesian framework. However, the model assumes that 
neurons encode information in a conditionally independent 
manner regardless of the neural connectivity [9]. It is not 
general in the real scenario. In the previous work, a generalized 
linear model (GLM) was proposed to project the external 
stimuli, self-spiking history and interneuron coupling items to 
a scalar which modulates the spike train in a tuning function 
[10]. The multiple components in the tuning function are 
assumed independent to form the neural population patterns in 
GLM, where the external stimuli may be easily dominated by 
the interneuron coupling items. Latent variable models (LVM) 
are also exploited to extract the shared latent states of neural 
connectivity from multi-neuron spike trains [1], [7]. But the 
decomposed latent states by LVM contain neural connectivity 
encoded information that is not only related to motion 
intentions but also noise or other stimuli in the environment.  

In this paper, we propose a point-process analogue of 
Kalman Filter that takes account of the neural connectivity in 
the Bayesian framework. The proposed method derives the 
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conditional probability of kinematics given the multiple neural 
spike observation in a closed form. The modeling on the neural 
connectivity corrects the shape of the posterior distribution, 
and a Gaussian distribution is used to approximate the first- 
and second-order statistics of the updated posterior 
distribution in the recursive approach. And Gaussian 
assumptions are introduced to simplify the recursive evolution 
of states. We test the proposed method on simulation data of a 
rat two-lever discrimination task. Compared with the 
traditional point-process analogue of Kalman Filter (PPKF) 
[11], the decoding performance of the rat movement is 
evaluated to validate the improvement when the neural 
connectivity is considered. The rest of this paper is organized 

proposed method. Simulation and results are shown in Section 
 Conclusion and future work are discussed i . 

II. METHODOLOGY 

A. Deriving Neural Connectivity in a Bayesian Filter with 
Point Process Observation 

The point process filter estimates a posterior distribution 
of the state given the observation of spike trains.  is defined 
as the total number of neuronal spikes up to , where  is 

time index in sequence  with a constant time interval 
. And  means the number of 

the observed spikes in the interval . The chosen 
small enough interval  (~10 msec) can guarantee that the 
most intervals have no more than one spike. The conditional 
intensity function characterizes a spike train using the 
inhomogeneous Poisson process as 

 (1) 

where  is the single neuronal tuning property parameters at 
time  and the states  are the movements in this paper. 

 contains the movement history and the spike 
observations from the start to time . The state evolves over 
time and is described by a linear system model as 

 (2) 
where  is the state transition matrix and  is zero-mean 
Gaussian noise with covariance . The conditional intensity 
function is assumed to be a known fixed nonlinear function as 

 (3) 
where  is an exponential neuronal tuning function 
modulating  with fixed parameters  in our method. The 
posterior density of kinematics can be decomposed according 
to the Bayes' theorem as 

 (4) 

where  is the prior estimation of the movements 
from the system model. The denominator  can be 
seen as the normalization item since it is not related to the 
kinematics. And  is the likelihood of the 
observed spikes within , which can be simplified as 

 under the assumption of instantaneous Markov 
process. By introducing an intermediate variable, the vector 
of neuronal firing probabilities , it can be transformed as: 

 (5) 

The second term in the numerator  is the 
likelihood based on the tuning function. Therefore, the  

here can be determined by (3) (represented as ). The first 
term means the neural patterns density encoded from 
kinematics and can be transformed following Bayes' theorem: 

 (6) 

where  is the probability density of kinematics given 

the firing probability patterns. This  is directly estimated 
from the spike trains (represented as ). This probability 
density describes the decoding of kinematics given the neural 
population firing. The interaction items among population 
given the firing observation  in  can represent the 
neural connectivity. Therefore, the information of the neural 
connectivity can be implemented in this item.  is the 

marginal probability of the firing probability regardless of . 
 is the marginal probability of movements. If we use  

in the denominator in (5), the denominator can be simplified 
as . As  can be obtained from  without 

using kinematic information, we further simplify  
to . Equation (5) and (6) can be combined to obtain: 

 (7) 

In our method, Gaussian approximations on  and 

 are applied. The spike train likelihood can be obtained: 

 (8)  

where  represents the Gaussian distribution 

 with expectation  and covariance . When a 
nonlinear function  is applied to multiple neuron 
observations to combine them and their coupling items with 
some coefficients, the information of neural connectivity can 
be involved. In this paper, we use a polynomial approximation 
to access the expectation of kinematics given the neuronal 
population observation  as  

 (9) 
where  is the weight vector and obtained by least square 
method.  includes single neural firing probability, the 

interaction terms  between pair of neurons and 

 among three neurons.  are index of neurons. 

In this way, the neural connectivity information is 
incorporated. Here we also include a bias item as 

 

 
(10) 

 in (8) is the zero-mean Gaussian distribution 
 with covariance . Covariance  and  are estimated 

through the residual error. And  is obtained 
through the single neuronal tuning property according to 
conditionally independent Poisson processes as 

 (11) 

where is the number of neurons and is the neuron index. In 
summary, the posterior estimation of the kinematics given 
point process observation is as follows 



  

 

 

(12) 

B. Point-Process Analogue of Kalman Filter with Neural 
Connectivity 

Our proposed method derives the closed form 
representation of the posterior from prior recursively overtime. 
Both prior and the posterior density at each time instance are 
obtained by Gaussian approximations. With the Chapman-
Kolmogorov equation, the prior density follows 

 
(13) 

where the Gaussian distribution , with expectation 
 and covariance , can be transmitted by a linear 

evolution model from the posterior estimation of the previous 
state  and  as 

 (14) 

 (15) 

where the state transition matrix  is trained by the least 
squares and covariance  is estimated through the residual 
error of the linear approximation. The posterior distribution 

 in (12) can be obtained by a Gaussian 
distribution with expectation  and covariance  as 

 
(16) 

Following similar derivations in PPKF [11],  evolves as 

 

 

 

(17) 

And the expectation  of the state posterior density, 

which is the output of the estimation, can be represented as 

 

 

 

(18) 

III. RESULT 

In this section, the proposed method is tested in a 
simulation compared with PPKF. A 2-dimensional trajectory 
and the corresponding spike trains of three neurons are 
generated to simulate that a rat performs a two-lever 
discrimination task. In this task, the rats were required to 
discriminate the cue audio, then press and hold one of the two 
levers correspondingly for water reward. The state 

 where  and  are the positions in the x and y 

directions at time index  respectively. 50 trails (25 trials for 
the high-lever pressing and 25 trials for the low-lever pressing) 
are randomly produced over time, and each trial contains 250 
data samples recording the trajectory from the resting state 
( ) to the lever-pressing state (  for high 
lever, and  for low lever) and back to the resting 
state. Both dimensions added with zero-mean Gaussian noise 
with 0.1 variance are shown in Fig. 1. 

 

Figure 1. The simulated movement. The horizontal axis is the time index. The 
vertical axes are the position in x and y respectively. 

We then generate the neuron spike trains through the 
following encoding model. The neuron  firing probability 

 consists of the single neuronal modulation  and the 

pair-wise neural interaction , which represents the 

existence of the neural connectivity encoding [3], [4]. 

+  (19) 

 is the firing probability sourcing from the single 

neuron modulating the movements by the single neuronal 
tuning functions as following: 

 (20) 

In terms of the single neuronal tuning function, neuron 1, 
neuron 2 and neuron 3 have higher firing probability 
corresponding to low lever pressing, both levers pressing and 

high lever pressing, respectively.  is the component in the 

firing probability modulated by neural connectivity.  

For , it is assumed that there are some latent neural 

connectivity states driving neurons to response interactively. 

 represents the pair-wise states shared by neuron  and  

at time .  is modulated by the latent states defined as 

 (21) 

 

Figure 2. Latent neural connectivity states between neurons in the first 10 
training trials. The horizontal axis is the time index, and the vertical axis is 
the latent connectivity parameters. 



  

As shown in Fig. 2, the latent neural connectivity states 
produce more active coordination from the start of the 
reaching to the end of the leaving and contribute to additional 
correlated information of the neural encoding. And the 
connectivity in resting state is weak. In our simulation, the 
latent neural connectivity states are set as sinusoid curves with 

0.05 amplitude for  and 0.1 amplitude for the other two 

states within each trial. The sign of values is related to the 
is pressed. During 

the latent connectivity states,  is positive for lower-lever 

trial and negative for high-lever trial. While  is converse 

for the two types of trials. There is always a mutually 
weakening state between neuron 1 and neuron 3. 

The spike trains are generated through a Bernoulli 
stochastic process according to the firing probability. The 
firing probability and the spike trains of the three simulated 
neurons in testing trials are shown in Fig. 3. The firing 
probability of each neuron is shown as the orange curve, and 
spikes are illustrated as the blue bars correspondingly. 40 
trials are used for training. 10 trials are for testing. 

 

Figure 3. The firing probability and spike trains of the three simulated 
neurons. The horizontal axis is the time index, and the vertical axis is the 
firing probability. The orange lines represent the firing probability. Each blue 
bar represents a spike. 

Fig. 4 shows the movement decoding results on a segment 
of the testing data. The red lines represent the ground truth of 
the trajectory. The green lines and the black lines are the 
decoding results of PPKF and the proposed method 
respectively. The mean square error (MSE) on the position in 
x between the ground truth and the result of PPKF is 0.1575 
while that of our method is 0.1063. For the position in y, the 
MSE of PPKF is 0.1804 and that of our method is 0.1566. We 
can see that during the lever pressing stage, our method can 

 
Figure 4. A segment of the decoding results. The horizontal axis is the time 
index, the vertical axis is the position in x and the position in y. The red line 
is the ground truth. The green line is the PPKF  result, and the black line is 
the result obtained by our method. 

reach more accurate and refined pressing positions in almost 
every trials. While PPKF fails to reach it especially in the y 
position. The MSE of our method in pressing stages on the 
position y is 0.0564 while that of PPKF is 0.1941. And the 
improvement is also shown in the resting states especially at 
the 1st, 5th, and 7th trials. These improvements demonstrate 
that introducing neural connectivity information can provide 
effective elements for the computational model. Therefore, 
considering neural connectivity in the point-process Bayesian 
methods can achieve a better decoding performance. 

IV. CONCLUSION 

A neural encoding model demonstrates how neurons 
responds to external stimuli and interacts with other neurons. 
Previous point process filters assume neuronal conditionally 
independent encoding, which may cause deviation of the state 
estimation in BMI. In this paper, we model neural 
connectivity in a point-process analogue of Kalman Filter. 
The closed-form derivation based on Gaussian 
approximations in the Bayesian filter corrects the posterior of 
the state given the multiple neural spikes. In this way, our 
method can combine single neuronal tuning property and 
neural connectivity information for state estimation. The 
simulation results indicate that considering neural 
connectivity improves the decoding performance of the point 
process filter. In the future, we will improve the method and 
validate it on real data to track time-varying neural properties. 
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